179 research outputs found

    An Artificial Immune System for Misbehavior Detection in Mobile Ad-Hoc Networks with Virtual Thymus, Clustering, Danger Signal and Memory Detectors

    Get PDF
    In mobile ad-hoc networks, nodes act both as terminals and information relays, and participate in a common routing protocol, such as Dynamic Source Routing (DSR). The network is vulnerable to routing misbehavior, due to faulty or malicious nodes. Misbehavior detection systems aim at removing this vulnerability. For this purpose, we use an Artificial Immune System (AIS), a system inspired by the human immune system (HIS). Our goal is to build a system that, like its natural counterpart, automatically learns and detects new misbehavior. In this paper we build on our previous work and investigate the use of four concepts: (1

    Direct comparison of a radioiodinated intact chimeric anti-CEA MAb with its F(ab')2 fragment in nude mice bearing different human colon cancer xenografts.

    Get PDF
    Tumour localisation and tumour to normal tissue ratios of a chimeric anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb), in intact form and as an F(ab')2 fragment labelled with 125I and 131I, were compared in groups of nude mice bearing four different colon cancer xenografts, T380, Co112 or LoVo, of human origin, or a rat colon cancer transfected with human CEA cDNA, called '3G7'. For each tumour, three to four mice per time point were analysed 6, 12, 24, 48 and 96 h after MAb injection. In the different tumours, maximal localisation of intact MAb was obtained at 24 to 48 h, and of F(ab')2 fragment 12 to 24 h after injection. Among the different tumours, localisation was highest with colon cancer T380, with 64% of the injected dose per gram (% ID/g) for the intact MAb and 57% for its F(ab')2 fragment, while in the three other tumours, maximal localisation ranged from 14 to 22% ID g-1 for the intact MAb and was about 11% for the F(ab')2. Tumour to normal tissue ratios of intact MAb increased rapidly until 24 h after injection and remained stable or showed only a minor increase thereafter. In contrast, for the F(ab')2 fragment, the tumour to normal tissue ratios increased steadily up to 4 days after injection reaching markedly higher values than those obtained with intact MAb. For the four different xenografts, tumour to blood ratios of F(ab')2 were about 2, 3 and 5 to 16 times higher than those of intact antibodies at 12, 24 and 96 h after injection, respectively

    Centrality Analysis in Vehicular Networks

    Get PDF
    To better understand networking and security aspects of VANETs, we have been investigating network connectivity issues and mappings of car networks to the underlying road topology. Using this mapping and various metrics based on centrality, we locate hot-spots in vehicular networks to determine the most vulnerable points for jamming. We also use these to optimize the placement of roadside units

    First in-human radiation dosimetry of (68)Ga-NODAGA-RGDyK.

    Get PDF
    Integrin-targeting radiopharmaceuticals have potential broad applications, spanning from cancer theranostics to cardiovascular diseases. We have previously reported preclinical dosimetry results of (68)Ga-NODAGA-RGDyK in mice. This study presents the first human dosimetry of (68)Ga-NODAGA-RGDyK in the five consecutive patients included in a clinical imaging protocol of carotid atherosclerotic plaques. Five male patients underwent whole-body time-of-flight (TOF) PET/CT scans 10, 60 and 120 min after tracer injection (200 MBq). Quantification of (68)Ga activity concentration was first validated by a phantom study. To be used as input in OLINDA/EXM, time-activity curves were derived from manually drawn regions of interest over the following organs: brain, thyroid, lungs, heart, liver, spleen, stomach, kidneys, red marrow, pancreas, small intestine, colon, urinary bladder and whole body. A separate dosimetric analysis was performed for the choroid plexuses. Female dosimetry was extrapolated from male data. Effective doses (EDs) were estimated according to both ICRP60 and ICRP103 assuming 30-min and 1-h voiding cycles. The body regions receiving the highest dose were urinary bladder, kidneys and choroid plexuses. For a 30-min voiding cycle, the EDs were 15.7 and 16.5 μSv/MBq according to ICRP60 and ICRP103, respectively. The extrapolation to female dosimetry resulted in organ absorbed doses 17% higher than those of male patients, on average. The 1-h voiding cycle extrapolation resulted in EDs of 19.3 and 19.8 μSv/MBq according to ICRP60 and ICRP103, respectively. A comparison is made with previous mouse dosimetry and with other human studies employing different RGD-based radiopharmaceuticals. According to ICRP60/ICRP103 recommendations, an injection of 200 MBq (68)Ga-NODAGA-RGDyK leads to an ED in man of 3.86/3.92 mSv. For future therapeutic applications, specific attention should be directed to delivered dose to kidneys and potentially also to the choroid plexuses. Clinical trial.gov, NCT01608516

    Repeated injections of 131I-rituximab show patient-specific stable biodistribution and tissue kinetics.

    Get PDF
    PURPOSE: It is generally assumed that the biodistribution and pharmacokinetics of radiolabelled antibodies remain similar between dosimetric and therapeutic injections in radioimmunotherapy. However, circulation half-lives of unlabelled rituximab have been reported to increase progressively after the weekly injections of standard therapy doses. The aim of this study was to evaluate the evolution of the pharmacokinetics of repeated 131I-rituximab injections during treatment with unlabelled rituximab in patients with non-Hodgkin's lymphoma (NHL). METHODS: Patients received standard weekly therapy with rituximab (375 mg/m2) for 4 weeks and a fifth injection at 7 or 8 weeks. Each patient had three additional injections of 185 MBq 131I-rituximab in either treatment weeks 1, 3 and 7 (two patients) or weeks 2, 4 and 8 (two patients). The 12 radiolabelled antibody injections were followed by three whole-body (WB) scintigraphic studies during 1 week and blood sampling on the same occasions. Additional WB scans were performed after 2 and 4 weeks post 131I-rituximab injection prior to the second and third injections, respectively. RESULTS: A single exponential radioactivity decrease for WB, liver, spleen, kidneys and heart was observed. Biodistribution and half-lives were patient specific, and without significant change after the second or third injection compared with the first one. Blood T(1/2)beta, calculated from the sequential blood samples and fitted to a bi-exponential curve, was similar to the T(1/2) of heart and liver but shorter than that of WB and kidneys. Effective radiation dose calculated from attenuation-corrected WB scans and blood using Mirdose3.1 was 0.53+0.05 mSv/MBq (range 0.48-0.59 mSv/MBq). Radiation dose was highest for spleen and kidneys, followed by heart and liver. CONCLUSION: These results show that the biodistribution and tissue kinetics of 131I-rituximab, while specific to each patient, remained constant during unlabelled antibody therapy. RIT radiation doses can therefore be reliably extrapolated from a preceding dosimetry study

    Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with γ\gamma Beams of High Intensity and Large Brilliance

    Full text link
    We study the production of radioisotopes for nuclear medicine in (γ,xn+yp)(\gamma,x{\rm n}+y{\rm p}) photonuclear reactions or (γ,γ\gamma,\gamma') photoexcitation reactions with high flux [(1013101510^{13}-10^{15})γ\gamma/s], small diameter (100μ\sim (100 \, \mum)2)^2 and small band width (ΔE/E103104\Delta E/E \approx 10^{-3}-10^{-4}) γ\gamma beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,xxn+y + yp) reactions with (ion=p,d,α\alpha) from particle accelerators like cyclotrons and (n,γ\gamma) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ\gamma beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). (γ,γ)(\gamma,\gamma') isomer production via specially selected γ\gamma cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ\gamma beams allow to produce certain radioisotopes, e.g. 47^{47}Sc, 44^{44}Ti, 67^{67}Cu, 103^{103}Pd, 117m^{117m}Sn, 169^{169}Er, 195m^{195m}Pt or 225^{225}Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example 195m^{195m}Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like 47^{47}Sc, 67^{67}Cu and 225^{225}Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.Comment: submitted to Appl. Phys.

    Involvement of circulating CEA in liver metastases from colorectal cancers re-examined in a new experimental model

    Get PDF
    Both experimental and clinical data show evidence of a correlation between elevated blood levels of carcinoembryonic antigen (CEA) and the development of liver metastases from colorectal carcinomas. However, a cause-effect relationship between these two observations has not been demonstrated. For this reason, we developed a new experimental model to evaluate the possible role of circulating CEA in the facilitation of liver metastases. A CEA-negative subclone from the human colon carcinoma cell line CO115 was transfected either with CEA-cDNA truncated at its 3' end by the deletion of 78 base pairs leading to the synthesis of a secreted form of CEA or with a full-length CEA-cDNA leading to the synthesis of the entire CEA molecule linked to the cell surface by a GPI anchor. Transfectants were selected either for their high CEA secretion (clone CO115-2C2 secreting up to 13 microg CEA per 10(6) cells within 72 h) or for their high CEA membrane expression (clone CO115-5F12 expressing up to 1 x 10(6) CEA molecules per cell). When grafted subcutaneously, CO115-2C2 cells gave rise to circulating CEA levels that were directly related to the tumour volume (from 100 to 1000 ng ml(-1) for tumours ranging from 100 to 1000 mm3), whereas no circulating CEA was detectable in CO115 and CO115-5F12 tumour-bearing mice. Three series of nude mice bearing a subcutaneous xenograft from either clone CO115-2C2 or the CO115-5F12 transfectant, or an untransfected CO115 xenograft, were further challenged for induction of experimental liver metastases by intrasplenic injection of three different CEA-expressing human colorectal carcinoma cell lines (LoVo, LS174T or CO112). The number and size of the liver metastases were shown to be independent of the circulating CEA levels induced by the subcutaneous CEA secreting clone (CO115-2C2), but they were directly related to the metastatic properties of the intrasplenically injected tumour cells
    corecore