315 research outputs found

    Symmetric hyperbolic systems for a large class of fields in arbitrary dimension

    Get PDF
    Symmetric hyperbolic systems of equations are explicitly constructed for a general class of tensor fields by considering their structure as r-fold forms. The hyperbolizations depend on 2r-1 arbitrary timelike vectors. The importance of the so-called "superenergy" tensors, which provide the necessary symmetric positive matrices, is emphasized and made explicit. Thereby, a unified treatment of many physical systems is achieved, as well as of the sometimes called "higher order" systems. The characteristics of these symmetric hyperbolic systems are always physical, and directly related to the null directions of the superenergy tensor, which are in particular principal null directions of the tensor field solutions. Generic energy estimates and inequalities are presented too.Comment: 24 pages, no figure

    Some notes on the Kruskal - Szekeres completion

    Full text link
    The Kruskal - Szekeres (KS) completion of the Schwarzschild spacetime is open to Synge's methodological criticism that the KS procedure generates "good" coordinates from "bad". This is addressed here in two ways: First I generate the KS coordinates from Israel coordinates, which are also "good", and then I generate the KS coordinates directly from a streamlined integration of the Einstein equations.Comment: One typo correcte

    Time transfer and frequency shift to the order 1/c^4 in the field of an axisymmetric rotating body

    Get PDF
    Within the weak-field, post-Newtonian approximation of the metric theories of gravity, we determine the one-way time transfer up to the order 1/c^4, the unperturbed term being of order 1/c, and the frequency shift up to the order 1/c^4. We adapt the method of the world-function developed by Synge to the Nordtvedt-Will PPN formalism. We get an integral expression for the world-function up to the order 1/c^3 and we apply this result to the field of an isolated, axisymmetric rotating body. We give a new procedure enabling to calculate the influence of the mass and spin multipole moments of the body on the time transfer and the frequency shift up to the order 1/c^4. We obtain explicit formulas for the contributions of the mass, of the quadrupole moment and of the intrinsic angular momentum. In the case where the only PPN parameters different from zero are beta and gamma, we deduce from these results the complete expression of the frequency shift up to the order 1/c^4. We briefly discuss the influence of the quadrupole moment and of the rotation of the Earth on the frequency shifts in the ACES mission.Comment: 17 pages, no figure. Version 2. Abstract and Section II revised. To appear in Physical Review

    Quantization of the Maxwell field in curved spacetimes of arbitrary dimension

    Full text link
    We quantize the massless p-form field that obeys the generalized Maxwell field equations in curved spacetimes of dimension n > 1. We begin by showing that the classical Cauchy problem of the generalized Maxwell field is well posed and that the field possess the expected gauge invariance. Then the classical phase space is developed in terms of gauge equivalent classes, first in terms of the Cauchy data and then reformulated in terms of Maxwell solutions. The latter is employed to quantize the field in the framework of Dimock. Finally, the resulting algebra of observables is shown to satisfy the wave equation with the usual canonical commutation relations.Comment: 17 pages, 1 figure, typset in RevTeX4. This version contains substantial revisions in the discussion of the Cauchy problem for the generalized Maxwell field equatio

    On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system

    Full text link
    In a previous work \cite{An1} matter models such that the energy density ρ≄0,\rho\geq 0, and the radial- and tangential pressures p≄0p\geq 0 and q,q, satisfy p+q≀Ωρ,Ω≄1,p+q\leq\Omega\rho, \Omega\geq 1, were considered in the context of Buchdahl's inequality. It was proved that static shell solutions of the spherically symmetric Einstein equations obey a Buchdahl type inequality whenever the support of the shell, [R0,R1],R0>0,[R_0,R_1], R_0>0, satisfies R1/R0<1/4.R_1/R_0<1/4. Moreover, given a sequence of solutions such that R1/R0→1,R_1/R_0\to 1, then the limit supremum of 2M/R12M/R_1 was shown to be bounded by ((2Ω+1)2−1)/(2Ω+1)2.((2\Omega+1)^2-1)/(2\Omega+1)^2. In this paper we show that the hypothesis that R1/R0→1,R_1/R_0\to 1, can be realized for Vlasov matter, by constructing a sequence of static shells of the spherically symmetric Einstein-Vlasov system with this property. We also prove that for this sequence not only the limit supremum of 2M/R12M/R_1 is bounded, but that the limit is ((2Ω+1)2−1)/(2Ω+1)2=8/9,((2\Omega+1)^2-1)/(2\Omega+1)^2=8/9, since Ω=1\Omega=1 for Vlasov matter. Thus, static shells of Vlasov matter can have 2M/R12M/R_1 arbitrary close to 8/9,8/9, which is interesting in view of \cite{AR2}, where numerical evidence is presented that 8/9 is an upper bound of 2M/R12M/R_1 of any static solution of the spherically symmetric Einstein-Vlasov system.Comment: 20 pages, Late

    The Stability of an Isentropic Model for a Gaseous Relativistic Star

    Get PDF
    We show that the isentropic subclass of Buchdahl's exact solution for a gaseous relativistic star is stable and gravitationally bound for all values of the compactness ratio u[≡(M/R)u [\equiv (M/R), where MM is the total mass and RR is the radius of the configuration in geometrized units] in the range, 0<u≀0.200 < u \leq 0.20, corresponding to the {\em regular} behaviour of the solution. This result is in agreement with the expectation and opposite to the earlier claim found in the literature.Comment: 9 pages (including 1 table); accepted for publication in GR

    Covariant conservation of energy momentum in modified gravities

    Full text link
    An explicit proof of the vanishing of the covariant divergence of the energy-momentum tensor in modified theories of gravity is presented. The gravitational action is written in arbitrary dimensions and allowed to depend nonlinearly on the curvature scalar and its couplings with a scalar field. Also the case of a function of the curvature scalar multiplying a matter Lagrangian is considered. The proof is given both in the metric and in the first-order formalism, i.e. under the Palatini variational principle. It is found that the covariant conservation of energy-momentum is built-in to the field equations. This crucial result, called the generalized Bianchi identity, can also be deduced directly from the covariance of the extended gravitational action. Furthermore, we demonstrate that in all of these cases, the freely falling world lines are determined by the field equations alone and turn out to be the geodesics associated with the metric compatible connection. The independent connection in the Palatini formulation of these generalized theories does not have a similar direct physical interpretation. However, in the conformal Einstein frame a certain bi-metricity emerges into the structure of these theories. In the light of our interpretation of the independent connection as an auxiliary variable we can also reconsider some criticisms of the Palatini formulation originally raised by Buchdahl.Comment: 8 pages. v2: more discussio

    Non-singular Universes a la Palatini

    Get PDF
    It has recently been shown that f(R) theories formulated in the Palatini variational formalism are able to avoid the big bang singularity yielding instead a bouncing solution. The mechanism responsible for this behavior is similar to that observed in the effective dynamics of loop quantum cosmology and an f(R) theory exactly reproducing that dynamics has been found. I will show here that considering more general actions, with quadratic contributions of the Ricci tensor, results in a much richer phenomenology that yields bouncing solutions even in anisotropic (Bianchi I) scenarios. Some implications of these results are discussed.Comment: 4 pages, no figures. Contribution to the Spanish Relativity Meeting (ERE2010), 6-10 Sept. Granada, Spai

    A new duality transformation for fourth-order gravity

    Get PDF
    We prove that for non-linear L = L(R), the Lagrangians L and \hat L give conformally equivalent fourth-order field equations being dual to each other. The proof represents a new application of the fact that the operator is conformally invariant.Comment: 11 pages, LaTeX, no figures. Gen. Relat. Grav. in prin

    Wormhole geometries supported by a nonminimal curvature-matter coupling

    Full text link
    Wormhole geometries in curvature-matter coupled modified gravity are explored, by considering an explicit nonminimal coupling between an arbitrary function of the scalar curvature, R, and the Lagrangian density of matter. It is the effective stress-energy tensor containing the coupling between matter and the higher order curvature derivatives that is responsible for the null energy condition violation, and consequently for supporting the respective wormhole geometries. The general restrictions imposed by the null energy condition violation are presented in the presence of a nonminimal R-matter coupling. Furthermore, obtaining exact solutions to the gravitational field equations is extremely difficult due to the nonlinearity of the equations, although the problem is mathematically well-defined. Thus, we outline several approaches for finding wormhole solutions, and deduce an exact solution by considering a linear R nonmiminal curvature-matter coupling and by considering an explicit monotonically decreasing function for the energy density. Although it is difficult to find exact solutions of matter threading the wormhole satisfying the energy conditions at the throat, an exact solution is found where the nonminimal coupling does indeed minimize the violation of the null energy condition of normal matter at the throat.Comment: 8 pages, 3 figures. V2: 9 pages, error and typos corrected; discussion and references added; to appear in PR
    • 

    corecore