11 research outputs found

    Anomalous temperature behaviour of subcritical crack growth in silica

    Get PDF
    Silica shows the effect of subcritical crack growth in humid environments. Measurements in liquid water show increasing subcritical crack growth velocities when the temperature is increased as was shown by Wiederhorn and Bolz. Since this has been generally found for glasses, this effect is called normal subcritical crack growth. For measurements on silica in water vapour environment the astonishing effect of decreasing crack-growth rate v at an increased temperature was observed for constant partial water pressure in the humid environment. This surprising result observed in v-K experiments by Suratwala and Steele is called anomalous subcritical crack growth behavior. In the present report we consider the effects of reduced water concentration at silica surfaces and volume swelling by hydroxyl generation as the reasons for anomalous subcritical crack growth. From our computation, we can conclude that silica shows normal subcritical crack growth, when it is taken into account that the real physical stress intensity factor KI_{I} is used that describes the stresses in the singular crack-tip field, i.e. when v-is plotted vs. Ktip_{tip}

    Mechanical investigation of glass ceramic brazed ceramic and steel composites

    Get PDF
    Solid oxide fuel cells (SOFC) convert chemical energy from hydrogen, methane, or other hydrocarbons directly into electrical energy and heat. Advantages are low noise during operation as well as relatively low pollutant emissions. This makes them interesting for stationary applications, eg combined heat and power plants for domestic use and for mobile applications, when there is a demand for integrating auxiliary power units. The high operating temperatures of about 850°C and the simultaneous presence by both, reducing and oxidizing atmospheres place high demands on the components of a SOFC. Due to these requirements, glass‐ceramics are proposed as sealants between interconnector and electrolyte. They provide lower costs and lower weight than commercially used silver solders. Furthermore, they have the following impressive benefits: The sealants are electrical insulating, chemical stable and by careful materials selection and adapted manufacturing processes, they adhere well on steel and on ceramic substrates. In order to characterize the adhesion of glass‐ceramic sealants on steel and on zirconia substrates, layer‐like composites are fabricated by screen‐printing and subsequent sintering in air. It turns out that the formation of crystalline phases at the interface is crucial for the adhesion behavior

    Manufacturing and characterization of interpenetrating SiC lightweight composites

    Get PDF
    AbstractThe current work deals with the gas pressure infiltration of SiC - preforms of selected porosities with an aluminum alloy in order to manufacture an interpenetrating composite with higher ductility in comparison to SiC bulk material and a higher temperature and creep resistance in comparison to aluminum bulk materials. The quality of the manufactured composite is analyzed metallographically which attests a good infiltration of the composite. The residual porosity is also determined and can be attributed to the closed porosity and insufficient infiltration of open porosity. It can be shown that the infiltration of the preform leads to an increase in compressive strength with reasonable ductility in comparison to the unreinforced matrix material

    Machine Learning Assisted Design of Experiments for Solid State Electrolyte Lithium Aluminum Titanium Phosphate

    Get PDF
    Lithium-ion batteries with solid electrolytes offer safety, higher energy density and higher long-term performance, which are promising alternatives to conventional liquid electrolyte batteries. Lithium aluminum titanium phosphate (LATP) is one potential solid electrolyte candidate due to its high Li-ion conductivity. To evaluate its performance, influences of the experimental factors on the materials design need to be investigated systematically. In this work, a materials design strategy based on machine learning (ML) is employed to design experimental conditions for the synthesis of LATP. In the variation of parameters, we focus on the tolerance against the possible deviations in the concentration of the precursors, as well as the influence of sintering temperature and holding time. Specifically, models built with different design selection strategies are compared based on the training data assembled from previous laboratory experiments. The best one is then chosen to design new experiment parameters, followed by measuring the corresponding properties of the newly synthesized samples. A previously unknown sample with ionic conductivity of 1.09 × 103^{-3} S cm1^{-1} is discovered within several iterations. In order to further understand the mechanisms governing the high ionic conductivity of these samples, the resulting phase compositions and crystal structures are studied with X-ray diffraction, while the microstructures of sintered pellets are investigated by scanning electron microscopy. Our studies demonstrate the advantages of applying machine learning in designing experimental conditions by the synthesis of desired materials, which can effectively help researchers to reduce the number of required experiments

    Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel

    No full text
    The effects of pigment volume concentration and morphology of zinc particles employed in the formulation of zinc rich paints (ZRP) suitable for the corrosion protection of naval steel in sea water, have been investigated using electrochemical impedance spectroscopy combined with open circuit potential measurements and SEM micrograph analysis. Different ZRP samples were tested during exposure to artificial sea water for up to 70 days. The characteristics and properties of the naval steel/ZRP coating/sea water systems were determined from an impedance transfer function model which involves the reactions occuring at the metal/ ZRP and ZRP/solution interfaces as well as diffusion processes through the active ZRP coating. Information concerning the influence of concentration and shape of the zinc pigment on the corrosion protective behaviour of ZRP coatings and on the exposure time dependence of the system parameters allowed to interprete the form in which the galvanic action and the barrier effect diminish progressively. The degree of rusting of the steel substrates as well as the blistering resistance of the formulated ZRP have been also evaluated according to conventional ASTM standards.Fil: Vilche, J. R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Bucharsky, E. C.. Universidad Nacional de Quilmes; ArgentinaFil: Giudice, Carlos Alberto. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentin
    corecore