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Lithium-ion batteries with solid electrolytes offer safety, higher energy density and higher
long-term performance, which are promising alternatives to conventional liquid electrolyte
batteries. Lithium aluminum titanium phosphate (LATP) is one potential solid electrolyte
candidate due to its high Li-ion conductivity. To evaluate its performance, influences of the
experimental factors on the materials design need to be investigated systematically. In this
work, a materials design strategy based on machine learning (ML) is employed to design
experimental conditions for the synthesis of LATP. In the variation of parameters, we focus
on the tolerance against the possible deviations in the concentration of the precursors, as
well as the influence of sintering temperature and holding time. Specifically, models built
with different design selection strategies are compared based on the training data
assembled from previous laboratory experiments. The best one is then chosen to
design new experiment parameters, followed by measuring the corresponding
properties of the newly synthesized samples. A previously unknown sample with ionic
conductivity of 1.09 × 10−3 S cm−1 is discovered within several iterations. In order to further
understand the mechanisms governing the high ionic conductivity of these samples, the
resulting phase compositions and crystal structures are studied with X-ray diffraction, while
the microstructures of sintered pellets are investigated by scanning electron microscopy.
Our studies demonstrate the advantages of applying machine learning in designing
experimental conditions by the synthesis of desired materials, which can effectively
help researchers to reduce the number of required experiments.
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1 INTRODUCTION

Energy is one of the core issues to be solved in the development of human society. Currently, lithium
ion batteries (LIBs) are widely used, as they show great promise as an effective energy storage
technology for a wide range of applications from mobile devices to electric vehicles. However,
commercial LIBs confront hidden risks which are due to the utilization of fluid electrolytes, which
may cause a variety of safety and performance problems, such as the potential ignition of the
flammable solvent. To address these problems, lithium-ion batteries with solid electrolytes have
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potentials to be safer and longer-lasting alternatives with higher
energy density compared to conventional liquid electrolyte
batteries by allowing the use of high-voltage cathodes, which
can decrease flammability, and suppress dendrite formation
(Goodenough and Kim, 2010). However, the principal design
challenge of solid electrolytes is their restricted ionic conductivity,
which is typically many orders of magnitude lower than that of
liquids (10−2 S cm−1) (Aravindan et al., 2011). The feasibility of
these concepts depends on the applied solid-state electrolyte, for
which a wide range of materials is being considered (Manthiram
et al., 2017). One of the promising materials is the family of
lithium containing NASICON (sodium super ionic conductor)
materials, such as lithium aluminum titanium phosphate (LATP,
Li1+xAlxTi2-x(PO4)3), one of the most often investigated materials
(Aono et al., 1990). They have received wide attention as they
have emerged as particularly promising solid electrolyte
candidates due to their high ionic conductivity, low cost, and
stability (Rossbach et al., 2018).

The ionic conductivity of LATP is particularly high for the
composition Li1.3Al0.3Ti1.7(PO4)3, and several studies have
reported values up to 10−3 S cm−1 (Narváez-Semanate and
Rodrigues, 2010; Pérez-Estébanez et al., 2014; Bucharsky et al.,
2015; Ma et al., 2016). Li1.3Al0.3Ti1.7(PO4)3 ceramics have been
successfully synthesized by different routes, such as calcination of
stoichiometric mixtures of oxide precursors (Arbi et al., 2002), by
glass crystallization (Narváez-Semanate and Rodrigues, 2010), or
by sol-gel (Bucharsky et al., 2015). However, these studies are
usually limited to laboratory scale, i.e., in small quantities and
under experimental environments. In order to make ceramic
electrolytes usable and competitive in the next generation of
batteries, it is necessary to identify processing routes for the
upscale production. The sol-gel route has already been adopted
successfully for the mass production of many materials for
industry and therefore provides a good basis for LATP
synthesis. For the sake of quality maintenance and
reproducibility, the crucial processing parameters have to be
identified. As the first step towards the upscaling of LATP
production via the sol-gel route, influence of possible
deviations in the concentration of the precursors was
investigated in our previous study (Schiffmann et al., 2021).
This applies especially to phosphoric acid which is difficult to
specify due to its hygroscopicity. In the case when precursors are
not exactly stoichiometric, this can easily lead to the second-
phase formation. In particular, for LATP, such second phases
have a great influence on the densification and the ionic
conductivity. Hupfer et al. (2017) report how the second
phases AlPO4 and LiTiOPO4 can have impacts on the
properties of LATP. In this work, synthesis of LATP is studied
by varying concentration of the reactants, dwell time, and
sintering temperature while microstructures, phase
compositions, and ionic conductivities of the samples are
further analyzed.

A key challenge in developing better materials is the large
potential search space for the optimal chemistries and processing
conditions. Traditionally, the development of new materials
requires a vast number of experiments guided by intuition,
trial and error, and is complemented by simulations and other

tools to analyze the mechanism or optimize the design (Wang
et al., 2015). As a result, this process is time-consuming,
challenging and is often accompanied by detours or
serendipity. Recently, the use of machine learning methods to
accelerate materials development has received a lot of attention
and many advances using this kind of technique have been made
in the study of solid-state electrolytes, such as screening fast ion
conductor candidates in supervised (Sendek et al., 2017) or
unsupervised (Zhang et al., 2019) manner, filtering electrolytes
in consideration of suppression of dendrite formation in lithium
metal anodes (Ahmad et al., 2018), and developing good
candidates combining theoretical calculations as well as
experimental data sets (Fujimura et al., 2013).

Among the many approaches, accelerating the research of
novel materials through automated experiments (Alberi et al.,
2018; Häse et al., 2019; Stein and Gregoire, 2019) instructed by
artificial intelligence (AI) (Tran and Ulissi, 2018) has recently
attracted a lot of interest. In particular, AI sampling algorithms
(Coley et al., 2020) hold great promise for resource-constrained
tasks such as materials research, since they can reduce the
number of experiments required to achieve a desired property
(Vasudevan et al., 2019). Among them, the Bayesian decision-
theoretic approach naturally lends itself to adaptive sampling and
active learning (Cohn et al., 1996). Hence, a series of active
learning methods based on Bayesian optimization can be used to
find the optimal material composition or to optimize the
experimental parameters. This type of method has been
successfully applied in different materials system, such as low
thermal hysteresis shape memory alloys (Xue et al., 2016),
BaTiO3-based ceramics with better dielectric energy storage
density (Yuan et al., 2019), fast ion conductors for
rechargeable batteries (Jalem et al., 2018; Harada et al., 2020;
Homma et al., 2020; Yang et al., 2020), oxygen evolution reaction
catalyst (Rohr et al., 2020), and organic thin films (MacLeod et al.,
2020).

In this work, we use a Gaussian process (GP) based Bayesian
optimization (Ki Williams, 2006) to optimize the synthesis of a
popular electrolyte material for solid-state lithium-ion batteries,
LATP (Li1.3Al0.3Ti1.7(PO4)3). Via the sol-gel route, it is possible to
prepare the material at laboratory scale with high purity and with
a maximum Li-ion conductivity in the order of 1 × 10−3 S cm−1 at
room temperature. However, for a potential commercial usage,
battery-cell upscaling of the synthesis is required. Based on our
previous study (Schiffmann et al., 2021), we further explore the
effects of deviations in the concentration of the precursors
H3PO4, sintering temperature and holding time on the
conductivity of the synthesized electrolytes. We use machine
learning methods to guide us to reduce the number of
required experiments as much as possible to produce LATP
with higher ionic conductivity. We train the initial model
using the data points from previous experiments (sampled
from an equidistant grid and this is noted as grid search) and
predict the next optimal experimental configurations. The results
show that newly synthesized samples guided by the model can
achieve a good performance with the maximum ionic
conductivity of 1.09 × 10−3 S cm−1, in the same order of
magnitude of the maximum Li-ion conductivity which LATP
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can achieve. This method can help to quickly narrow down the
search space and assist the experimentalists in designing and
analyzing experiments.

2 EXPERIMENTS AND MACHINE
LEARNING METHODS

2.1 Experiments
In our experiments, LATP powders are prepared following a
modified sol-gel synthesis route described by (Bucharsky et al.,
2015). Appropriate amounts of lithium acetate Li(C2H3O2)
·2H2O (purity ≥ 99%, Alfa Aesar GmbH & Co KG, Germany),
aluminum nitrate Al(NO3)3 ·9H2O (purity ≥ 98.5%, Merck
KGaA, Germany), titanium-isopropoxide Ti[OCH(CH3)2]4
(purity ≥ 98%, Merck KGaA, Germany) are used as
precursors. Lithium acetate and aluminum nitrate are
dissolved in distilled water under constant stirring. Titanium-
Isopropoxide is then added dropwise to the solution. By adding
the phosphoric acid slowly through a drip funnel, a white gel
forms, which is then dried at room temperature for 24 h. The
subsequent heat treatment is performed in two steps: first,
samples are heat treated at 400°C for 6 h to achieve the
precursor formation and to eliminate reaction gases; second,
samples are then processed at 900°C for 8 h to complete the
reaction to crystalline LATP. One sol-gel batch is prepared with
all precursors in stoichiometric quantities (marked as 0.0 wt%).
To test whether the sol-gel route is tolerant against possible
deviations in the concentration of the precursors, we also
explore different sol-gel batches with either an excess up to
+7.5 wt%, or a deficiency up to −15.0 wt% of phosphoric acid
compared to the stoichiometric composition.

To ensure a high sinterability, the obtained powders are
further processed in a planetary ball mill. The pellets are
formed by uniaxial pressing and then further densified by cold
isostatic pressing at 400 MPa. All pressed samples have a green
density of approximately 62% relative density. Samples are
sintered at temperatures ranging from 850 to 1,050°C and
isothermal sintering time between 30 and 540 min. After
sintering, samples are cooled down to room temperature in
furnace and their corresponding densities are determined by
Archimedes’ method. For the ionic conductivity
measurements, impedance analysis is performed at room
temperature over the frequency range from 0.1 Hz to 1 MHz
with an AC amplitude of 50 mV in the frequency response
analyzer (AMTEK GmbH, VersaSTAT 4, Pennsylvania,
United States). For further details of the experimental part
please refer to our previous work (Schiffmann et al., 2021).

To apply machine learning methods in guiding the
experimental study, 80 initial data points from the
aforementioned phosphoric acid deviation study are used to
train the Gaussian process regression based Bayesian
optimization (GPR-BO) model. These data points are sampled
from an equidistant grid from −22.5 wt% to +7.5 wt% deviation of
phosphoric acid compared to the stoichiometric composition.
Sintering parameters with temperatures ranging from 800°C up to
1,100°C in steps of 100°C and isothermal durations of 10, 30, 60

and 480 min are applied. To further investigate the effect of these
synthesis and sintering conditions on the properties of LATP, the
machine learning model is used to predict promising candidate to
investigate. Considering the long time needed to synthesize
samples with different acid concentrations, we expand the
experimental conditions available to the model in two steps:
for the first two iterations (1–2), we only allow the model to
make a choice among the available samples; for the last two
iterations (3–4), we expand the selection range of acid
concentrations. Such kind of condition setting is derived from
the results of our previous grid search study and offers an efficient
compromise that would address the otherwise excessively large
search space. In total, we have synthesized 22 new samples in 4
iterations following the model’s predictions. Detailed settings for
the experiments are listed in Table 1.

2.2 Machine Learning Methods
2.2.1 Design Loop
Our method of applying Bayesian optimization (BO) in guiding
experiments is schematically illustrated in Figure 1. The whole
process is mapped as a workflow containing an iterative loop with
feedback steps and it is also collectively referred to as “adaptive
design.” First, the model fits the initial data points. Then the next
candidate configuration is predicted and the accompanying
experiment and measurements are performed. Finally, the
resulting new data point is fed back into the data set for the
next iteration. Key ingredients of this process for our problem are
as follows: 1) collecting the training data set of the solid state
electrolyte LATP, where samples are described by features, here:
experimental conditions and their measured properties of interest
(e.g., ionic conductivity); 2) training an inference model
(Gaussian process regressor) to learn to map the input-output
relationship with associated uncertainties. Then, the trained
model predicts the outputs (i.e., ionic conductivities) along
with their corresponding uncertainties for the whole search
space; 3) choosing the combination of experimental
parameters, which is expected to produce the material with
better characteristics (e.g., higher ionic conductivity) by
balancing the trade-off between exploitation and exploration,
that is, taking both prediction (of the best known so far) and
uncertainty into consideration; 4) performing experiments and
measuring the corresponding properties; 5) adding the new
sample to the training data set, which allows the subsequent
iterative improvement of the inference model. This loop
continues until performance (e.g., we have synthesized a
sample with a satisfying performance) or a break condition,
such as a maximum number of iterations, is met. In this work,
the research data infrastructure Kadi4Mat (Brandt et al., 2021) is
used to share and manage data for continuously updating the
machine learning model. Besides, the whole workflow will also be
integrated into this platform and serves as a demonstration for
data-driven and machine learning based optimization of solid
state electrolyte.

2.2.2 Bayesian Optimization
Bayesian optimization (BO) is a class of machine-learning-based
optimization methods focusing on solving the problem arg
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maxx∈χ f(x) within a domain χ ⊂ Rd as the bounding box. Its
ability to optimize expensive black-box derivative-free functions
makes BO extremely versatile (Shahriari et al., 2015). Recently, it
has become extremely popular for tuning hyper-parameters in
machine learning algorithms, especially deep neural networks
(Snoek et al., 2012). A typical Bayesian optimization algorithm
involves two primary components: a method for statistical
inference, typically Gaussian process (GP) (Rasmussen, 2003;
Williams and Rasmussen, 2006); and an acquisition function that
decides where to sample. For the latter, there are many options
such as PI [probability of improvement (Kushner, 1964)], EI
[expected improvement (Močkus, 1975; Jones et al., 1998)] or
UCB [upper confidence boundary (Auer et al., 2002)]. GP
(Gaussian process) is a widely used surrogate for modeling
objective functions in Bayesian optimization. The function f is
typically assumed to be a GP which is determined by a mean
function μ and a covariance kernel K, f ~ GP(μ, K). Given the
observed data set D, the question would be where the next point
to observe the function is. The meta-approach in Bayesian
optimization is to design an acquisition function a(x). The
acquisition function is usually an inexpensive function, which
defines a balance between exploring new areas in the objective
space and exploiting areas that are already known to have
favorable values (Frazier, 2018). This strategy is important for
helping to find the global optimum efficiently instead of being
trapped in a local optimum. In short, by adopting this method,
the original optimization problem is replaced with another
optimization problem based on a much-cheaper function a(x).

PI is one of the earliest acquisition functions designed for
Bayesian optimization which suggests maximizing the probability
of improvement over the current best observed value f(x+), where
x+ � arg maxx∈D1: tf(x) with the observed data set D1:t, so that

xt+1 � arg max
x∈χ

aPI x( ) � arg max
x∈χ

P f x( )≥f x+( )( )
� arg max

x∈χ
Φ μt x;D1: t( ) − f x+( )

σt x;D1: t( )( )
whereΦ(·) is the normal cumulative distribution function, μt and
σt are the posterior mean and posterior standard deviation at
iteration t.

Alternatively, maximizing the expected improvement (EI)
over the current best value can also be chosen, which accounts
for the size of the improvement (while PI does not). It can be
computed analytically as:

xt+1 � arg max
x∈χ

aEI x( )

� arg max
x∈χ

μt x;D1: t( ) − f x+( )( )Φ Z( ) + σt x;D1: t( )ϕ Z( )[ ]

Z � μt x;D1: t( ) − f x+( )
σt x;D1: t( )

where Φ(·) and ϕ(·) are the cumulative distribution function
(CDF) and probability density function (PDF) of the standard
normal distribution, respectively.

The acquisition function of UCB takes the form:

xt+1 � arg max
x∈χ

aUCB x( ) � arg max
x∈χ

μt x;D1: t( ) + κσt x;D1: t( )[ ].

This function can be intuitively interpreted as a weighted sum
of prediction of f(x) and its uncertainty. κ is a tunable hyper-
parameter (usually set to be 1.96 as it represents the 95%
confidence interval and generally has good performance)
which controls how much of the variance in the predicted

TABLE 1 | Range of experimental parameters for selection.

Experimental
parameters

Iteration 1–2 Iteration 3–4

Value range

Rel. amount of acid wt% −22.5, −15.0, −7.5, 0.0, 7.5 −22.5, −18.75, −15.0, −11.25, −7.5, −3.75, 0.0, 3.75, 7.5
Temperature °C 800–1,100 (step size 50) 800–1,100 (step size 25)
Time min 10, 20, 30, 40, 50, 60, 90, 120, 240, 360,

480, 540
10, 20, 30, 40, 50, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480,

510, 540

FIGURE 1 | An overview of the Bayesian optimization workflow. It consists of five main components and forms an iterative loop: (i) collecting some initial data points
(input-output pairs) from experiments and aggregating them into a database which will be used for training the machine learningmodel; (ii) fitting an inferencemodel (e.g.,
a Gaussian process regressionmodel); based on the existing data set; (iii) predicting the property in the search space along with uncertainty, taking both prediction (of the
best known so far) and uncertainty (i.e., exploitation vs. exploration) into consideration for selecting the next optimal experimental configuration which has the
potential to yield a better property; (iv) performing the experiment to synthesize new sample and (v) validating the new sample’s performance using different
characterization techniques. The resulting sample is fed back into the initial training data set for the next iteration.
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values should be taken into account. Higher value favours the
exploration over exploitation and vice versa.

To predict optimal experimental parameters in an effective
way, the search strategy also needs to follow the aforementioned
principle, i.e., combining exploration and exploitation. The
model should not only focus on the local region where the
known maximum value is located, but also explore the whole
search space wisely. Here, we adopt one of the widely used
Bayesian optimization methods named GP-UCB [Gaussian
Process Upper Confidence Boundary (Srinivas et al., 2009)],
which is an intuitive algorithm inspired by the multi-armed
bandit problem. We show how the GP-UCB method can be
used for materials discovery, as this allows us to choose potential
candidates which aims at maximizing the target property of the
material. A schematic diagram of the working principle is
illustrated in Figure 2. This figure shows the fitting of model
with the H3PO4 acid at stoichiometry (namely, .0 wt%), where the
x-axis stands for dwell time and the y-axis represents the sintering

temperature. Larger values of the ionic conductivity are marked
with brighter color. The left diagram shows what the prediction
(inference) based on known data points from the grid search
study looks like in the search space and the right diagram
illustrates the prediction with uncertainty. It can be clearly
seen that when taking the uncertainty into account, the search
surface becomes significantly rugged and the location of the
possible optimal value has shifted. The model will select
regions worth exploring according to both the prediction and
the degree of uncertainty.

In addition to UCB, we also compare the abovementioned two
other common acquisition functions: PI and EI. The detailed
results will be discussed in the model selection section shown in
Figure 3. In performing the experiments, we greedily choose the
next experimental condition for the synthesis of LATP with the
best predicted value from the model. In order to make full use of
our experiment facilities, it is better that the model can suggest
several samples simultaneously in the pre-defined search space in

FIGURE 2 | Illustration of the prediction (A) based on known data points (white points) and prediction with uncertainty (B) from the Gaussian process regression
with UCB model in the search space. It shows the ionic conductivity (S cm−1) of LATP with stoichiometric H3PO4 (0.0 wt%), where higher values are indicated with
brighter color. The x-axis represents the holding time, while the y-axis represents the sintering temperature. It can be seen that the position of the possible optimum (the
lightest area) has shifted when considering the uncertainty.

FIGURE 3 | Comparison of GPR based Bayesian optimization with different acquisition functions, EI (dark purple), UCB (light purple), PI (orange) and random
selection (grey dashed): (A) number of counts to find the global maximum in the repeated 200 virtual experiments, where random selection (grey dashed line) can find
126 times (63%); (B) number of additional tries of different strategies needed after n initial random selections (x-axis) to find the global maximum of ionic conductivity
(1.09 × 10−3 S cm−1) in the training data set (grid search). On average random selection takes about 34.7 tries to arrive at the maximum. It is noticeable that only
those cases where the global minimum is found are counted to calculate the average.

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 9 | Article 8218175

Zhao et al. ML Assisted Design of LATP

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


each iteration of BO. However, one of the limitations of Bayesian
optimization is that the acquisition is myopic and permits only a
single sample per iteration (Brochu et al., 2010). To alleviate this
problem, the so-called Kriging believer approach (Cressie, 1990)
is used to suggest 5–6 samples at the same time during each
iteration of BO in our study: to suggest more than 1 sample in
each iteration, this approach (temporarily) adds each predicted
sample to the training data set for updating the model, and then
predicts another sample subsequently.

3 RESULTS AND DISCUSSIONS

3.1 Data Set
The initial 80 training data points are listed in Supplementary
Table S1.

3.2 Model Selection
As there is no clear indication of which optimization strategy to
use (according to the “no-free-lunch theorem” (Wolpert and
Macready, 1997), there is no universal optimizer for all
problems), we compare the optimization efficiencies of BOs
with random search, EI, UCB and PI strategies with the 80
initial points from the grid search study. The strategy of
achieving the maximum ionic conductivity (1.09 ×
10−3 S cm−1) with the least number of average iterations is
considered to be optimal. During the experiment of comparing
these strategies, random noise is added to the observations and
the sample is allowed to be picked more than once (namely, with
replacement). In detail, we randomly select a given number of
samples from the training data with replacement as initial data
points, then train the model using a given acquisition function
and count the total number of extra tries (after initial random
picks) needed to find the best sample (that is, the one with the
largest ionic conductivity) in the grid search study. The model is
only allowed to make up to m attempts (m = 80 − number of
initial data points) to find the maximum value. This process is
called “virtual experiment” and is repeated 200 times with
different sets of randomly selected samples. In the overall
count, the initial random picks are excluded. Detailed results
of comparing different strategies of acquisition functions are
shown in Figure 3.

Figure 3A illustrates how many times different strategies
can find the global maximum (1.09 × 10−3 S cm−1) within the
80 tries in 200 virtual experiments. The grey dashed line
represents how many counts the random selection can find
the global maximum. Among the 200 virtual experiments, the
random selection can find 126 times (63%) and it acts as the
base line for evaluating the performance of other models.
From the figure it can be seen that GPR model with an EI
(dark purple) or UCB (light purple) acquisition function can
find the maximum in most virtual experiments (≥ 95%),
where UCB performs slightly better than EI in some cases.
In contrast, PI (orange) performs slightly worse than the
other two, but still much better than the random selection.
We speculate that PI sometimes gets stuck in the local
optimum, making it difficult for the model to reach the

global maximum. As a result, it fails to find the global
maximum in some cases.

Figure 3B illustrates the average number of extra tries (after a
given number of initial data points) required for the models with
different acquisition functions to find the global maximum. The
random selection takes on average 34.7 tries to find the global
maximum, which is marked as grey dashed line in the figure. It
can be seen that all the three models perform much better than
the random selection. Performance of EI and UCB is similar, with
UCB being slightly better and it takes the fewest extra tries to
achieve the best result. More specifically, the number of extra tries
needed to find the global maximum for EI and UCB decreases
quickly with more initial data points, which is reasonable as the
models’ ability to fit and predict is gradually enhanced. After
more than 15 initial data points, the gain of introducing more
initial data points gradually decreases and the required extra tries
finally stabilizes at about 5. This phenomenon is very beneficial
for experiments because the model can achieve good performance
even with only a small number of initial data points, significantly
reducing the number of attempts required. In contrast, the
performance of PI is worse than the other two strategies as it
requires more steps to obtain the global optimum. Therefore, we
choose the model with UCB acquisition function and use it to
predict the optimal experimental conditions, as it is more robust
and takes fewer steps to reach the global optimum.

3.3 Result of Newly Synthesized Lithium
Aluminum Titanium Phosphate Samples
As the search space becomes larger, it is difficult to manually
determine the experimental conditions to obtain samples with
better performance. Hence, a machine learning model is
employed to help to explore the unknown experimental space
quickly in order to reduce the number of required trials. The
experimental conditions predicted by the model and their
measured properties of the resulting new samples, namely,
relative density after sintering and ionic conductivity, are listed
in Table 2. All samples have a green density of approximately
62% so this property is not listed. Starting with 80 data points, we
have performed 4 iterations (each predicting 5–6 samples) to
optimize the experimental conditions to obtain LATP with higher
ionic conductivity. At the end of each iteration, the newly
synthesized samples are fed back to the model, which is then
retrained. After the update, new experimental conditions are
predicted for the next iteration. This process forms a loop,
which is repeated until the target number of iterations has
been achieved. In total 22 new samples are synthesized.

It can be seen from Table 2 that the model quickly discovers a
new sample (sample No. 3) with second highest ionic
conductivity (1.06 × 10−3 S cm−1) in the first iteration. The
ionic conductivity of this sample is very close to the highest
one of all samples (1.09 × 10−3 S cm−1), which shows a very good
performance of our model. The comparison of experimental
conditions shows that even though the sintering time of the
new sample (540 min) is 60 min longer than that of the known
maximum sample (480 min, with a deficiency of −7.25% H3PO4

at 900°C), it can still maintain good performance. This indicates
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that LATP samples synthesized under this condition are stable
against long holding time. On the other hand, comparing the
densities of samples No. 2 (360 min) andNo. 5 (240 min) it can be
concluded that shorter holding time is not enough for the samples
to get fully sintered as the densities of these samples are less than
those with longer holding time. Therefore, the ionic
conductivities of these samples are significantly lower than
those of the fully sintered ones.

As the Bayesian optimization process is a trade-off process
between exploration and exploitation, it is important to explore
unknown areas efficiently, which can help to find the global
optimum in a scientific way. This can be well reflected in our
experiments. It can be seen that in the first iteration, the model
explores experimental conditions with holding time at 360 min
(sample No. 2) and 240 min (sample No. 5), as the original
experimental conditions of grid search have a large gap
(uncertainty) of holding time between 60 and 480 min.
Similarly, this can also explain why the model in the second
iteration explores the temperature intervals that have never been
explored before, as these areas are subject to relatively large
degrees of uncertainties. Though samples obtained in the
second iteration show poor ionic conductivity (on average
1.59 × 10−4 S cm−1), it does not render this iteration a failure.
This attempt is reasonable and can help the model to quickly
explore this unknown region and excludes the possibility of an
optimal value appearing in that region, which effectively reduces
the number of tries it needs compared to the exhaustive method.
Notably, starting from the third iteration, we expand the range of
experimental conditions that can be chosen, more centrally, we
expand the extent to which the amount of precursor H3PO4 can

be adjusted, as its preparation can take a long time. It can be
clearly seen that the model also undergoes a competitive process
between exploration and exploitation in the third and fourth
iterations. It first makes predictions (samples No. 12–14) with
experimental conditions with a deficiency of −11.25% H3PO4,
which has never been explored before (exploration). At this point,
the model finds a new sample (sample No. 14) with a value of
ionic conductivity which is as large as the previous maximum
(1.09 × 10−3 S cm−1). Then the model begins to make the most of
this information and makes several attempts (samples No. 18, 21,
22) around this point (exploitation). It can be seen that properties
(ionic conductivity) of later samples are inferior to that of sample
No. 14, indicating that the model has a good predictive
performance. As a result, it can find the optimal value
efficiently and quickly, reducing the number of required
experiments.

The values of ionic conductivity (black line) during the four
iterations and the values of the maximum (grey line) are plotted
in Figure 4. It can be noted that the overall result shows a step-
wise upward trend, illustrating the improvement of new samples
during iterations. During the iteration, the model goes through a
process of exploration and exploitation, which can be reflected in
the fluctuating experimental results of ionic conductivity. The
model first selects a sample which yields moderate performance
(5.67 × 10−4 S cm−1). Afterwards, the performance of samples
increases with iterations and it quickly finds the second highest
maximum (sample No. 3). Starting from the sample No. 11, the
search space is extended (marked as the vertical grey dashed line
in the middle) and the model quickly finds another global
maximum (sample No. 14, marked as red star). Another

TABLE 2 | Recommended samples using BO and measured properties.

Iteration No Experimental parameters Measured properties

rel. H3PO4 wt% Temperature°C Time min rel. Density % Ionic
Conductivity S cm−1

1 1 −7.5 1,000 40 87.99 5.67 × 10−4

2 −7.5 1,000 360 92.78 7.21 × 10−4

3 −7.5 1,000 540 95.81 1.06 × 10−3

4 0.0 900 20 96.29 7.23 × 10−4

5 −7.5 1,000 240 92.12 6.89 × 10−4

2 6 −15.0 950 480 78.24 1.27 × 10−4

7 −22.5 950 540 80.00 4.93 × 10−5

8 7.5 950 540 75.22 6.67 × 10−5

9 0.0 850 30 92.56 4.91 × 10−4

10 0.0 1,050 30 81.27 6.11 × 10−5

3 11 .0 900 40 95.80 4.07 × 10−4

12 −11.25 1,000 480 97.47 9.06 × 10−4

13 −11.25 1,000 510 96.11 7.87 × 10−4

14 −11.25 1,000 450 97.52 1.09 × 10−3

15 −7.5 1,000 450 95.00 4.02 × 10−4

16 −7.5 1,000 510 97.36 4.37 × 10−4

4 17 −15.0 1,000 450 97.21 7.81 × 10−4

18 −11.25 1,000 420 95.25 8.36 × 10−4

19 −15.0 1,000 510 96.81 5.36 × 10−4

20 −15.0 1,025 450 98.89 5.87 × 10−4

21 −11.25 1,000 540 91.31 6.38 × 10−4

22 −11.25 1,000 390 91.60 7.10 × 10−4
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schematic diagram (similar to Figure 2) is shown in the
supporting material (Supplementary Figure S1) to illustrate
the above working principle and to better visualize the
evolution of changes in the predictions of the model during
different iterations. Overall, results of predictions prove that our
model has a good ability to help us to find another sample with
maximum ionic conductivity under different experimental
condition where it has never been explored before. By using
the Bayesian optimization model, it can help the experimentalist
to quickly narrow the search space and hence can reduce the
number of required experiments effectively.

To further explore why these samples (e.g., sample No. 14)
have better performances than others, characterization
measurement are performed to investigate the mechanisms
governing the high ionic conductivity. Details are given in the
next section.

3.4 Characterization of Lithium Aluminum
Titanium Phosphate Samples
A standard stoichiometric LATP sample reaches the highest
ionic conductivity at a sintering temperature of 900°C and a

FIGURE 4 | The values of ionic conductivity for each sample (black line) during the four iterations and the values of the maximum (grey line). The results of
experiments show a fluctuating trend, reflecting the exploration vs. exploitation in the optimization process. The overall result exhibits a step-wise upward trend and it can
be seen that the model has found the largest values of ionic conductivity (marked as red star) within several iterations.

FIGURE 5 | X-ray diffraction patterns for the LATP (−11.25 wt%) sample sintered at 1,000°C for 450 min and one LATP (0.0 wt%) sample sintered at 900°C for
30 min. A standard X-ray diffraction pattern of Li1.3Al0.3Ti1.7(PO4)3 from the database is shown in red color for reference.
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holding time of 30 min. With the aid of machine learning
algorithms, the best properties are achieved for the sample
No. 14, which is sintered from a LATP batch synthesized with
a deficit of −11.25 wt% in phosphoric acid and sintered at
1,000°C for 450 min. For a better understanding why this
sample has also reached ionic conductivity performance in
the order of 1 × 10−3 S cm−1, even though synthesis and
sintering conditions deviated from the standard procedure,
the microstructure is analyzed. Figure 5 shows a comparison
of the X-ray diffraction patterns of the standard
stoichiometric LATP (0.0 wt%) sample and another LATP
(−11.25 wt%) sample. While the stoichiometric sample is still
phase pure in the expected NZP-structure after sintering,
clear foreign peaks can be seen in the LATP (−11.25 wt%)
sample. Among the foreign phases that have formed in
addition to the NZP-structure, TiO2 could be identified as
a second phase.

In addition, the different microstructure developments are
shown in Figure 6. Figure 6A shows the LATP (0.0 wt%) sample
sintered at 900°C with a holding time of 30 min. There, the ionic
conductivity in the order of 1 × 10−3 S cm−1 is achieved by a
homogeneous and dense microstructure with small and uniform
grains as well as very small and finely distributed pores. Despite
the significantly different sintering parameters, Figure 6B shows
a similar homogeneous microstructure with only slightly larger
grains and pores for the LATP (−11.25 wt%) sample. The
homogeneous grain size and dense structure is not typical for
LATP sintered at this high temperature as the comparison in
Figure 6C with LATP (0.0 wt%) sintered with these parameters
shows. There, abnormal grain growth and the related microcracks
in these large grains, due to a high thermal expansion anisotropy
between a and c lattice parameters, shatter the microstructure and
cause a drastic decrease in ionic conductivity (Jackman and
Cutler, 2012; Hupfer et al., 2016; Waetzig et al., 2016). Grain

FIGURE 6 | Microstructure of (A) LATP (0.0 wt%) sample sintered at 900°C for 30 min; (B) LATP (−11.25 wt%) sample sintered at 1,000°C for 450 min and (C)
LATP (0.0 wt%) sample sintered at 1,000°C for 450 min.

FIGURE 7 | EDX-line-scan of a bright second phase particle in the structure of the sintered LATP (−11.25 wt%) sample. A significant increase can be clearly seen in
titanium intensity at the position of the bright region, which indicates that the second phase is highly possible to be TiO2.
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growth seems to be suppressed for the LATP (−11.25 wt%)
sample by second-phase particles, which are visible as
homogeneously distributed bright dots throughout the
structure at the triple points of the grain boundaries. The
evaluation of the corresponding XRD-pattern leads to the
assumption that the second phase is TiO2 and this is
reinforced by the results of the EDX (Energy dispersive
X-Ray) analysis of one of these particles shown in Figure 7.
The line-scan shows a clear increase in the titanium intensity in
the EDX measurement at the position of the bright particle. The
interaction between second-phase particles and migrating grain
boundaries is known as Zener-type mechanism in ceramic
materials and can reduce grain growth. This is likely to be the
reason for the moderate grain growth of the LATP (−11.25 wt%)
sample at these high sintering temperatures (Rahaman, 2007). It
allows for a densification of the microstructure that in turn results
in a ionic conductivity in the order of 1 × 10−3 S cm−1. The above
analysis serves to explain the possible mechanism why samples
like No. 14 have better performances than others, which agrees
well with the conclusions from our previous study (Schiffmann
et al., 2021) where a deficiency of phosphoric acid in the synthesis
can lead to the formation of LiTiOPO4 and TiO2. It seems that the
second phases are the reason for the prevention of abnormal grain
growth for sintering temperatures up to 1,000°C. Because the
small grains are less susceptible to microcracking, a dense
structure with high ionic conductivity is achievable even
sintered at these high sintering temperatures. Experimental
parameters for other samples, such as the sample No. 3
(1.06 × 10−3 S cm−1) synthesized with parameters (−7.5 wt%,
1,000°C, 540 min), are comparable to one of the samples
(−7.5 wt%, 1,000°C, 480 min with ionic conductivity of 1.09 ×
10−3 S cm−1) in the paper mentioned above and one can therefore
assume that a comparable microstructure is the reason for the
high ionic conductivity of this sample as well.

4 CONCLUSION

Our work shows that a data-driven materials design strategy based
on Bayesian optimization using Gaussian process regression can be
employed in effectively designing experimental conditions for
synthesizing LATP, which is one of the potential solid
electrolyte candidates for batteries. The whole design strategy is
divided into several sections: first, to find the most suitable model
for our study, virtual experiments are performed to compare
models built with several combinations of design strategies
using the training data assembled from previous laboratory
studies. In our study, we find that the model with UCB (upper
confidence boundary) strategy can achieve the best performance.
Second, the best model is then selected to design new experimental
parameters in order to synthesize new sample with the largest
possible value of ionic conductivity. Third, the corresponding
properties of the newly sintered samples are measured and
these results are fed back to update the model for the next
iteration of the design process. Our results show that within
several iterations, newly synthesized samples guided by the
model can achieve a good performance with maximum value of

1.09 × 10−3 S cm−1, which is in the same order of magnitude of the
maximum Li-ion conductivity that LATP can achieve. In addition,
the range of search space can be dynamically adjusted during the
experiment, making this method flexible according to researchers’
needs. Besides, it can help the researcher to quickly explore the
boundary of the range of experimental parameters whichmay yield
samples with good performance, hence it can be assisted in
designing experiments in an effective and reasonable way to
reduce the number of required experiments. It is worth noting
here that the main focus of this work is on single-objective
optimization, that is, only the ionic conductivity is paid
attention to. Admittedly, this is a simplification of the
optimization problem, since other properties (e.g., sintered
density) can also affect our interested property. As a result,
taking them into consideration and regarding it as a multi-
objective optimization problem (previous studies concerning
similar question can be found in (Harada et al., 2020; Yang
et al., 2020)) may further improve the performance of the
model and may hence result in better samples. This question
deserves to be explored in details and is left for the future research.

In order to further understand the reasons governing the high
ionic conductivity of these samples, the resulting crystal structures
and phase compositions are studied with X-ray diffraction and
energy dispersive X-Ray analysis, while the microstructures of
sintered pellets are investigated by scanning electron
microscopy. The formation of secondary phases such as TiO2, is
demonstrated to be substantially influenced by the initial
concentration of the precursors, which can influence ionic
conductivity, densification behavior, andmicrostructure evolution.

In summary, our studies demonstrate the advantages of adopting
machine learning for an accelerated design of experimental
parameters by the synthesis of materials with targeted properties,
which can help experimentalists to explore the search space
effectively and narrow the parameter range quickly. This is a
general method that can be mapped to other research systems
and the whole workflow will be kept sustainable within the
Kadi4Mat framework, which can reduce the number of required
experiments and accelerate the process of developing materials.
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