353 research outputs found

    On the age of the magnetically active WW Psa and TX Psa members of the beta Pictoris association

    Get PDF
    There are a variety of different techniques available to estimate the ages of pre-main-sequence stars. Components of physical pairs, thanks to their strict coevality and the mass difference, such as the binary system analysed in this paper, are best suited to test the effectiveness of these different techniques. We consider the system WW Psa + TX Psa whose membership of the 25-Myr beta Pictoris association has been well established by earlier works. We investigate which age dating technique provides the best agreement between the age of the system and that of the association. We have photometrically monitored WW Psa and TX Psa and measured their rotation periods as P = 2.37d and P = 1.086d, respectively. We have retrieved from the literature their Li equivalent widths and measured their effective temperatures and luminosities. We investigate whether the ages of these stars derived using three independent techniques are consistent with the age of the beta Pictoris association. We find that the rotation periods and the Li contents of both stars are consistent with the distribution of other bona fide members of the cluster. On the contrary, the isochronal fitting provides similar ages for both stars, but a factor of about four younger than the quoted age of the association, or about 30% younger when the effects of magnetic fields are included. We explore the origin of the discrepant age inferred from isochronal fitting, including the possibilities that either the two components may be unresolved binaries or that the basic stellar parameters of both components are altered by enhanced magnetic activity. The latter is found to be the more reasonable cause, suggesting that age estimates based on the Li content is more reliable than isochronal fitting for pre-main-sequence stars with pronounced magnetic activity.Comment: Accepted by Astronomy and Astrophysics on December 13, 2016. 13 pages and 11 figure

    Ultraviolet Radiation Constraints around the Circumstellar Habitable Zones

    Get PDF
    Ultraviolet radiation is known to inhibit photosynthesis, induce DNA destruction and cause damage to a wide variety of proteins and lipids. In particular, UV radiation between 200-300 nm becomes energetically very damaging to most of the terrestrial biological systems. On the other hand, UV radiation is usually considered one of the most important energy source on the primitive Earth for the synthesis of many biochemical compounds and, therefore, essential for several biogenesis processes. In this work, we use these properties of the UV radiation to define the bounderies of an ultraviolet habitable zone. We also analyze the evolution of the UV habitable zone during the main sequence stage of the star. We apply these criteria to study the UV habitable zone for those extrasolar planetary systems that were observed by the International Ultraviolet Explorer (IUE). We analyze the possibility that extrasolar planets and moons could be suitable for life, according to the UV constrains presented in this work and other accepted criteria of habitability (liquid water, orbital stability, etc.).Comment: 34 pages, 8 figures Accepted for publication by Icaru

    Activity-rotation in the dM4 star Gl 729. A possible chromospheric cycle

    Get PDF
    Recently, new debates about the role of layers of strong shear have emerged in stellar dynamo theory. Further information on the long-term magnetic activity of fully convective stars could help determine whether their underlying dynamo could sustain activity cycles similar to the solar one. We performed a thorough study of the short- and long-term magnetic activity of the young active dM4 star Gl 729. First, we analyzed long-cadence K2K2 photometry to characterize its transient events (e.g., flares) and global and surface differential rotation. Then, from the Mount Wilson SS-indexes derived from CASLEO spectra and other public observations, we analyzed its long-term activity between 1998 and 2020 with four different time-domain techniques to detect cyclic patterns. Finally, we explored the chromospheric activity at different heights with simultaneous measurements of the Hα\alpha and the Na I D indexes, and we analyzed their relations with the SS-Index. We found that the cumulative flare frequency follows a power-law distribution with slope 0.73\sim- 0.73 for the range 103210^{32} to 103410^{34} erg. We obtained Prot=(2.848±0.001)P_{rot} = (2.848 \pm 0.001) days, and we found no evidence of differential rotation. We also found that this young active star presents a long-term activity cycle with a length of about four\text{about four} years; there is less significant evidence of a shorter cycle of 0.80.8 year. The star also shows a broad activity minimum between 1998 and 2004. We found a correlation between the S index, on the one hand, and the Hα\alpha the Na I D indexes, on the other hand, although the saturation level of these last two indexes is not observed in the Ca lines. Because the maximum-entropy spot model does not reflect migration between active longitudes, this activity cycle cannot be explained by a solar-type dynamo. It is probably caused by an α2\alpha^2-dynamo

    UV Radiation of the Young Sun and its Implications for Life in the Solar System

    Get PDF
    UV radiation is thought to have played an important role in the origin of life on Earth. To estimate these levels of UV radiation, we computed the UVC uxes from HST/STIS and IUE spectra of the young solar analogs κ 1 Cet and χ 1 Ori. In the future experiments with extremophilic microorganisms we will use these resulting UVC-levels to test the probability of the survival, and therefore, the existence of this kind of life at Early Earth, Early Mars and Early Europa.Fil: Abrevaya, Ximena Celeste. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Hanslmeier, A.. Institute of Physics; AustriaFil: Leitzinger, M.. Institute of Physics; AustriaFil: Odert, P.. Institute of Physics; Austria. Space Research Institute; AustriaFil: Mauas, Pablo Jacobo David. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Buccino, Andrea Paola. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    The beta Pictoris association: Catalog of photometric rotational periods of low-mass members and candidate members

    Get PDF
    We intended to compile the most complete catalog of bona fide members and candidate members of the beta Pictoris association, and to measure their rotation periods and basic properties from our own observations, public archives, and exploring the literature. We carried out a multi-observatories campaign to get our own photometric time series and collected all archived public photometric data time series for the stars in our catalog. Each time series was analyzed with the Lomb-Scargle and CLEAN periodograms to search for the stellar rotation periods. We complemented the measured rotational properties with detailed information on multiplicity, membership, and projected rotational velocity available in the literature and discussed star by star. We measured the rotation periods of 112 out of 117 among bona fide members and candidate members of the beta Pictoris association and, whenever possible, we also measured the luminosity, radius, and inclination of the stellar rotation axis. This represents to date the largest catalog of rotation periods of any young loose stellar association. We provided an extensive catalog of rotation periods together with other relevant basic properties useful to explore a number of open issues, such as the causes of spread of rotation periods among coeval stars, evolution of angular momentum, and lithium-rotation connection.Comment: Forthcoming article, Received: 20 June 2016 / Accepted: 09 September 2016; 40 pages, 2 figures. The online figures A1-A73 are available at CD

    Bend it like Beckham: embodying the motor skills of famous athletes.

    Get PDF
    Observing an action activates the same representations as does the actual performance of the action. Here we show for the first time that the action system can also be activated in the complete absence of action perception. When the participants had to identify the faces of famous athletes, the responses were influenced by their similarity to the motor skills of the athletes. Thus, the motor skills of the viewed athletes were retrieved automatically during person identification and had a direct influence on the action system of the observer. However, our results also indicated that motor behaviours that are implicit characteristics of other people are represented differently from when actions are directly observed. That is, unlike the facilitatory effects reported when actions were seen, the embodiment of the motor behaviour that is not concurrently perceived gave rise to contrast effects where responses similar to the behaviour of the athletes were inhibited

    Radio Occultation Measurements of Europa's Ionosphere From Juno's Close Flyby

    Get PDF
    On 29 September 2022 the Juno spacecraft flew within 354 km of Europa's surface while several instruments probed the moon's surroundings. During the close flyby, radio occultations were performed by collecting single-frequency Doppler measurements. These investigations are essential to the study of Europa's ionosphere and represent the first repeat sampling of any set of conditions since the Galileo era. Ingress measurements resulted in a marginal detection with a peak ionospheric density of 4,000 ± 3,700 cm−3 (3σ) at 22 km altitude. A more significant detection emerged on egress, with a peak density of 6,000 ± 3,000 cm−3 (3σ) at 320 km altitude. Comparison with Galileo measurements reveals a consistent picture of Europa's ionosphere, and confirms its dependence on illumination conditions and position within Jupiter's magnetosphere. However, the overall lower densities measured by Juno suggest a dependence on time of observation, with implications for the structure of the neutral atmosphere
    corecore