145 research outputs found

    Lymphatic vessels of the dura mater: A new discovery?

    Get PDF
    Two recent paper s (Aspelund et al. 2015; Louveau et al. 2015) reported the presence in mice of lymphatics in the cerebra l dura mater , the most external of the meningeal layers covering the brain. This datum was reporte d as a novel discovery in the \ufb01elds of neuroanatomy and neuroim- munology

    Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources

    Get PDF
    In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organization by further enhancing its biological cues. However, there are still some limitations that need to be overcome before 3D bioprinting may be globally used for scaffolds' development and their clinical translation. One of them is represented by the poor availability of appropriate, biocompatible and eco-friendly biomaterials, which should present a series of specific requirements to be used and transformed into a proper bioink for CTE. In this scenario, considering that, nowadays, the environmental decline is of the highest concerns worldwide, exploring naturally-derived hydrogels has attracted outstanding attention throughout the scientific community. For this reason, a comprehensive review of the naturally-derived hydrogels, commonly employed as bioinks in CTE, was carried out. In particular, the current state of art regarding eco-friendly and natural bioinks' development for CTE was explored. Overall, this paper gives an overview of 3D bioprinting for CTE to guide future research towards the development of more reliable, customized, eco-friendly and innovative strategies for this field of interest

    Stem Cell Populations and Regenerative Potential in Chronic Inflammatory Lung Diseases

    Get PDF
    Several acute and chronic inflammatory pathologies of the lung are accompanied by structural modifications of airway mucosa that vary depending on the severity, duration and type of the disease. These morphological changes, that determine organ dysfunction, are not always reversible. Indeed, the cycle of injury and repair, influencing airway wall regeneration, may sometimes break off and an exacerbation of the pathology may occur. The mechanisms at the base of airway remodelling during inflammation have been widely studied and numerous evidences indicate that the molecular dialogue among the cells of the mucosa has an essential role in orchestrating cell differentiation and tissue repair. In this review, we revise old notions on pulmonary morphology at the light of some of the most recent discoveries concerning stem cell differentiation, tissue homeostasis and organ regeneration of the lung

    Cellular models and assays to study NLRP3 inflammasome biology

    Get PDF
    The NLRP3 inflammasome is a multi-protein complex that initiates innate immunity responses when exposed to a wide range of stimuli, including pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Inflammasome activation leads to the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and to pyroptotic cell death. Over-activation of NLRP3 inflammasome has been associated with several chronic inflammatory diseases. A deep knowledge of NLRP3 inflammasome biology is required to better exploit its potential as therapeutic target and for the development of new selective drugs. To this purpose, in the past few years, several tools have been developed for the biological characterization of the multimeric inflammasome complex, the identification of the upstream signaling cascade leading to inflammasome activation, and the downstream effects triggered by NLRP3 activation. In this review, we will report cellular models and cellular, biochemical, and biophysical assays that are currently available for studying inflammasome biology. A special focus will be on those models/assays that have been used to identify NLRP3 inhibitors and their mechanism of action

    Extracellular vesicles in airway homeostasis and pathophysiology

    Get PDF
    The epithelial–mesenchymal trophic unit (EMTU) is a morphofunctional entity involved in the maintenance of the homeostasis of airways as well as in the pathogenesis of several diseases, including asthma and chronic obstructive pulmonary disease (COPD). The “muco-microbiotic layer” (MML) is the innermost layer of airways made by microbiota elements (bacteria, viruses, archaea and fungi) and the surrounding mucous matrix. The MML homeostasis is also crucial for maintaining the healthy status of organs and its alteration is at the basis of airway disorders. Nanovesicles produced by EMTU and MML elements are probably the most important tool of communication among the different cell types, including inflammatory ones. How nanovesicles produced by EMTU and MML may affect the airway integrity, leading to the onset of asthma and COPD, as well as their putative use in therapy will be discussed here

    Non-specific bronchial hyper-responsiveness in children with allergic rhinitis: relationship with the atopic status

    Get PDF
    An increased prevalence of bronchial hyper-responsiveness (BHR) has been demonstrated in children from a general population, and in non-asthmatic adults with allergic rhinitis. Thus, also children with allergic rhinitis are expected to be at higher risk of BHR. We evaluated the prevalence of BHR in a sample of non-asthmatic children with allergic rhinitis by means of the methacholine (Mch) bronchial challenge, and by monitorizing the airway patency using the daily peak expiratory flow variability (PEFv). Fifty-one children (ranged 6-15 years of age) with allergic rhinitis, ascertained by skin prick test to inhalant allergens, underwent a 14-day peak expiratory flow monitoring, and a Mch bronchial provocation challenge. Thirty healthy children matched for age, and sex served as control group. Thirty-one children in the rhinitis group (61%), and six (20%) in the control group were Mch+ (Mch provocative dose causing a 20% fall of forced expiratory volume in 1 s respect to baseline <2250 microg, equivalent to 11.50 micromol). In rhinitic children the PEFv did not significantly differ between Mch+ and Mch- subjects, but the total serum immunoglobulin E (IgE) were higher among Mch+. The persistent form of rhinitis was significantly associated to Mch positivity. Non-asthmatic children with allergic rhinitis displayed a high prevalence of BHR. The BHR was significantly associated with persistent rhinitis and with higher total IgE levels. Nevertheless, the spontaneous changes in airway patency, as expressed by PEFv, were within normal limits both in Mch+ and Mch- children

    The Mechanism and Potential Therapeutic Effects of Cyclosporin, Cyclophilin, Probiotics and Syndecan-1 in an Animal Model of Inflammatory Bowel Disease

    Get PDF
    Background: Inflammatory bowel diseases (IBDs) have several treatment modalities including immunoregulators, like cyclosporine A, an immunosuppressant that interacts with cytoplasmic cyclophilin A, and probiotics. Aims: This study explored and compared the possible role of syndecan-1 in the IBD pathogenic process as well as the effectiveness of cyclophilin A, cyclosporine A, and their combination in the management of IBDs in the presence of probiotics. Methodology: IBD was induced in a total of 112 mice equally divided between syndecan-1 knock-out (KO) and Balb/c wild-type mice, using 2% dextran sulfate sodium (DSS) followed by intraperitoneal treatment with cyclosporine A, cyclophilin A, or a combination of both. In addition, a daily dose of probiotics was given in their drinking water. The animals were monitored for clinical signs and symptoms and checked for gross pathologies in the abdomen after 3 weeks. Descending and sigmoid colon biopsies were collected and fixed for routine microscopy or frozen for protein extraction and molecular testing for IL-6, CD3, CD147, and beta 1 integrins as well as pAkt expression. Results: The data showed that the induction of IBD in the syndecan-1 KO mice was more severe at the clinical, histological, and molecular levels than in the wild type. The combined CypA-CyA treatment showed no added inhibitory effect compared to single-drug treatment in both strains. Probiotics added to the combination was more effective in the wild type and, when used alone, its inhibition of IL-6 was the highest. As for the CD147 marker, there were more suppressions across the various groups in the KO mice except for the probiotics-alone group. Concerning CD3, it was significantly increased by the CypA-CyA complex, which led to more inflammation in the KO mice. Probiotics had little effect with the combination. In relation to beta 1 integrins, the CypA-CyA combination made no significant difference from CyA alone, and adding probiotics to the combination resulted in higher beta 1 integrin expression in the KO mice. As for pAkt, it was very well expressed and upregulated in both strains treated with DSS, but the effect was much larger in the KO mice. In brief, the CypA-CyA complex showed a decrease in the expression of pAkt, but there was no added effect of both drugs. Probiotics along with the complex had a similar reduction effects in both strains, with a greater effect in the wild-type mice, while probiotics alone led to a similar reduction in pAkt expressions in both strains. Conclusions: The differential effects of CyA, CypA, probiotics, and their combinations on the various inflammatory markers, as well as the histological alterations and clinical signs and symptoms, speak in favor of a clear role of syndecan-1 in reducing inflammation. However, probiotics need to be considered after more explorations into the mechanisms involved in the presence of CypA and CyA especially since pAkt is less active in their presence

    Proportional Venn diagram and determinants of allergic respiratory diseases in Italian adolescents

    Get PDF
    Large variations in prevalence of atopy and allergic diseases are reported worldwide in children, but in epidemiological studies the use of skin prick tests (SPT) and spirometry along with questionnaires is not common in the Mediterranean Area. The present work was aimed at evaluating the prevalence of current asthma (CA), rhinoconjunctivitis (RC), and eczema (E), with atopy and respiratory function, and the role of risk factors for allergic respiratory diseases. A total of 2150 Italian schoolchildren were cross-sectionally investigated through respiratory questionnaire, SPT, and spirometry. A proportional Venn diagram quantified the distribution of CA, RC, and E, stratifying for allergic sensitization to show differences in prevalence of allergic diseases among subjects with and without positive SPT. CA prevalence was 4.2%, RC 17.9%, and E 5.3%. CA and RC increased, while E decreased, with respect to previous local studies. Allergic sensitization prevalence (evaluated as positive response to at least one SPT) was 39.2%. A double Venn diagram identified 15 categories. Atopic CA was threefold more frequent than non-atopic CA. Atopic vs non-atopic RC and E were 9.6% vs 10.3% and 2.0% vs 3.3%, respectively. Atopic vs non-atopic RC associated with CA were 1.6% vs 0.5%; the same figures for RC associated with E were 0.8% vs 1.3%. Asymptomatic atopic subjects were 27.0%. Atopy, RC, parental asthma, and environmental risk factors were associated with CA. Atopy and environmental factors were risk factors also for RC. Asthma and traffic exposure were linked to reduced lung function. Respiratory allergic diseases are still increasing and largely concomitant in Italian adolescents. Atopy is more important for CA than RC. Avoiding exposures to measured environmental risk factors would prevent 41% of current asthma and 34% of rhinoconjunctivitis

    From Dysbiosis to Neurodegenerative Diseases through Different Communication Pathways: An Overview

    Get PDF
    The microbiome research field has rapidly evolved over the last few decades, becoming a major topic of scientific and public interest. The gut microbiota (GM) is the microbial population living in the gut. The GM has many functions, such as maintaining gut homeostasis and host health, providing defense against enteric pathogens, and involvement in immune system development. Several studies have shown that GM is implicated in dysbiosis and is presumed to contribute to neurodegeneration. This review focuses mainly on describing the connection between the intestinal microbiome alterations (dysbiosis) and the onset of neurodegenerative diseases to explore the mechanisms that link the GM to nervous system health, such as the gut-brain axis, as well as the mitochondrial, the adaptive humoral immunity, and the microvesicular pathways. The gut-brain communication depends on a continuous bidirectional flow of molecular signals exchanged through the neural and the systemic circulation. These pathways represent a possible new therapeutic target against neuroinflammation and neurodegeneration. Progress in this context is desperately needed, considering the severity of most neurodegenerative diseases and the current lack of effective treatments
    • …
    corecore