11 research outputs found

    miRNA expression is increased in serum from patients with semantic variant primary progressive aphasia

    Get PDF
    Primary progressive aphasia (PPA) damages the parts of the brain that control speech and language. There are three clinical PPA variants: nonfluent/agrammatic (nfvPPA), logopenic (lvPPA) and semantic (svPPA). The pathophysiology underlying PPA variants is not fully understood, including the role of micro (mi)RNAs which were previously shown to play a role in several neurodegenerative diseases. Using a two-step analysis (array and validation through real-time PCR), we investigated the miRNA expression pattern in serum from 54 PPA patients and 18 controls. In the svPPA cohort, we observed a generalized upregulation of miRNAs with miR-106b-5p and miR-133a-3p reaching statistical significance (miR-106b-5p: 2.69 ± 0.89 mean ± SD vs. 1.18 ± 0.28

    Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration

    No full text
    In the fascinating landscape of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are peeping out as a new promising and appreciated class of molecules with great potential as diagnostic and prognostic biomarkers. They come from circularization of single-stranded RNA molecules covalently closed and generated through alternative mRNA splicing. Dismissed for many years, similar to aberrant splicing by-products, nowadays, their role has been regained. They are able to regulate the expression of linear mRNA transcripts at different levels acting as miRNA sponges, interacting with ribonucleoproteins or exerting a control on gene expression. On the other hand, being extremely conserved across phyla and stable, cell and tissue specific, mostly abundant than the linear RNAs, it is not surprising that they should have critical biological functions. Curiously, circRNAs are particularly expressed in brain and they build up during aging and age-related diseases. These extraordinary peculiarities make circRNAs potentially suitable as promising molecular biomarkers, especially of aging and neurodegenerative diseases. This review aims to explore new evidence on circRNAs, emphasizing their role in aging and pathogenesis of major neurodegenerative disorders, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s diseases with a look toward their potential usefulness in biomarker searching

    The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis

    No full text
    Alzheimer’s disease (AD) is the most common cause of neurodegenerative dementia, whilst Parkinson’s disease (PD) is a neurodegenerative movement disorder. These two neurodegenerative disorders share the accumulation of toxic proteins as a pathological hallmark. The lack of definitive disease-modifying treatments for these neurogenerative diseases has led to the hypothesis of new pathogenic mechanisms to target and design new potential therapeutic approaches. The recent observation that the glymphatic system is supposed to be responsible for the movement of cerebrospinal fluid into the brain and clearance of metabolic waste has led to study its involvement in the pathogenesis of these classic proteinopathies. Aquaporin-4 (AQP4), a water channel located in the endfeet of astrocyte membrane, is considered a primary driver of the glymphatic clearance system, and defective AQP4-mediated glymphatic drainage has been linked to proteinopathies. The objective of the present review is to present the recent body of knowledge that links the glymphatic system to the pathogenesis of AD and PD disease and other lifestyle factors such as sleep deprivation and exercise that may influence glymphatic system function. We will also focus on the potential neuroimaging approaches that could identify a neuroimaging marker to detect glymphatic system changes

    Treatment of Alzheimer’s Disease: Beyond Symptomatic Therapies

    No full text
    In an ever-increasing aged world, Alzheimer’s disease (AD) represents the first cause of dementia and one of the first chronic diseases in elderly people. With 55 million people affected, the WHO considers AD to be a disease with public priority. Unfortunately, there are no final cures for this pathology. Treatment strategies are aimed to mitigate symptoms, i.e., acetylcholinesterase inhibitors (AChEI) and the N-Methyl-D-aspartate (NMDA) antagonist Memantine. At present, the best approaches for managing the disease seem to combine pharmacological and non-pharmacological therapies to stimulate cognitive reserve. Over the last twenty years, a number of drugs have been discovered acting on the well-established biological hallmarks of AD, deposition of β-amyloid aggregates and accumulation of hyperphosphorylated tau protein in cells. Although previous efforts disappointed expectations, a new era in treating AD has been working its way recently. The Food and Drug Administration (FDA) gave conditional approval of the first disease-modifying therapy (DMT) for the treatment of AD, aducanumab, a monoclonal antibody (mAb) designed against Aβ plaques and oligomers in 2021, and in January 2023, the FDA granted accelerated approval for a second monoclonal antibody, Lecanemab. This review describes ongoing clinical trials with DMTs and non-pharmacological therapies. We will also present a future scenario based on new biomarkers that can detect AD in preclinical or prodromal stages, identify people at risk of developing AD, and allow an early and curative treatment

    miRNA Expression Is Increased in Serum from Patients with Semantic Variant Primary Progressive Aphasia

    No full text
    Primary progressive aphasia (PPA) damages the parts of the brain that control speech and language. There are three clinical PPA variants: nonfluent/agrammatic (nfvPPA), logopenic (lvPPA) and semantic (svPPA). The pathophysiology underlying PPA variants is not fully understood, including the role of micro (mi)RNAs which were previously shown to play a role in several neurodegenerative diseases. Using a two-step analysis (array and validation through real-time PCR), we investigated the miRNA expression pattern in serum from 54 PPA patients and 18 controls. In the svPPA cohort, we observed a generalized upregulation of miRNAs with miR-106b-5p and miR-133a-3p reaching statistical significance (miR-106b-5p: 2.69 ± 0.89 mean ± SD vs. 1.18 ± 0.28, p < 0.0001; miR-133a-3p: 2.09 ± 0.10 vs. 0.74 ± 0.11 mean ± SD, p = 0.0002). Conversely, in lvPPA, the majority of miRNAs were downregulated. GO enrichment and KEGG pathway analyses revealed that target genes of both miRNAs are involved in pathways potentially relevant for the pathogenesis of neurodegenerative diseases. This is the first study that investigates the expression profile of circulating miRNAs in PPA variant patients. We identified a specific miRNA expression profile in svPPA that could differentiate this pathological condition from other PPA variants. Nevertheless, these preliminary results need to be confirmed in a larger independent cohort
    corecore