16 research outputs found

    Congenital hypothyroidism

    Get PDF
    Congenital hypothyroidism (CH) occurs in approximately 1:2,000 to 1:4,000 newborns. The clinical manifestations are often subtle or not present at birth. This likely is due to trans-placental passage of some maternal thyroid hormone, while many infants have some thyroid production of their own. Common symptoms include decreased activity and increased sleep, feeding difficulty, constipation, and prolonged jaundice. On examination, common signs include myxedematous facies, large fontanels, macroglossia, a distended abdomen with umbilical hernia, and hypotonia. CH is classified into permanent and transient forms, which in turn can be divided into primary, secondary, or peripheral etiologies. Thyroid dysgenesis accounts for 85% of permanent, primary CH, while inborn errors of thyroid hormone biosynthesis (dyshormonogeneses) account for 10-15% of cases. Secondary or central CH may occur with isolated TSH deficiency, but more commonly it is associated with congenital hypopitiutarism. Transient CH most commonly occurs in preterm infants born in areas of endemic iodine deficiency. In countries with newborn screening programs in place, infants with CH are diagnosed after detection by screening tests. The diagnosis should be confirmed by finding an elevated serum TSH and low T4 or free T4 level. Other diagnostic tests, such as thyroid radionuclide uptake and scan, thyroid sonography, or serum thyroglobulin determination may help pinpoint the underlying etiology, although treatment may be started without these tests. Levothyroxine is the treatment of choice; the recommended starting dose is 10 to 15 mcg/kg/day. The immediate goals of treatment are to rapidly raise the serum T4 above 130 nmol/L (10 ug/dL) and normalize serum TSH levels. Frequent laboratory monitoring in infancy is essential to ensure optimal neurocognitive outcome. Serum TSH and free T4 should be measured every 1-2 months in the first 6 months of life and every 3-4 months thereafter. In general, the prognosis of infants detected by screening and started on treatment early is excellent, with IQs similar to sibling or classmate controls. Studies show that a lower neurocognitive outcome may occur in those infants started at a later age (> 30 days of age), on lower l-thyroxine doses than currently recommended, and in those infants with more severe hypothyroidism

    Supplementary Material for: Everolimus in Neuroendocrine Tumors of the Gastrointestinal Tract and Unknown Primary

    No full text
    Purpose: The RADIANT-4 randomized phase 3 study demonstrated significant prolongation of median progression-free survival (PFS) with everolimus compared to placebo (11.0 [95% CI 9.2-13.3] vs. 3.9 [95% CI 3.6-7.4] months) in patients with advanced, progressive, nonfunctional gastrointestinal (GI) and lung neuroendocrine tumors (NET). This analysis specifically evaluated NET patients with GI and unknown primary origin. Methods: Patients in the RADIANT-4 trial were randomized 2:1 to everolimus 10 mg/day or placebo. The effect of everolimus on PFS was evaluated in patients with NET of the GI tract or unknown primary site. Results: Of the 302 patients enrolled, 175 had GI NET (everolimus, 118; placebo, 57) and 36 had unknown primary (everolimus, 23; placebo, 13). In the GI subset, the median PFS by central review was 13.1 months (95% CI 9.2-17.3) in the everolimus arm versus 5.4 months (95% CI 3.6-9.3) in the placebo arm; the hazard ratio (HR) was 0.56 (95% CI 0.37-0.84). In the unknown primary patients, the median PFS was 13.6 months (95% CI 4.1-not evaluable) for everolimus versus 7.5 months (95% CI 1.9-18.5) for placebo; the HR was 0.60 (95% CI 0.24-1.51). Everolimus efficacy was also demonstrated in both midgut and non-midgut populations; a 40-46% reduction in the risk of progression or death was reported for patients in the combined GI and unknown primary subgroup. Everolimus had a benefit regardless of prior somatostatin analog therapy. Conclusions: Everolimus showed a clinically meaningful PFS benefit in patients with advanced progressive nonfunctional NET of GI and unknown primary, consistent with the overall RADIANT-4 results, providing an effective new standard treatment option in this patient population and filling an unmet treatment need for these patients

    A randomized, open-label, phase 2 study of everolimus in combination with pasireotide LAR or everolimus alone in advanced, well-differentiated, progressive pancreatic neuroendocrine tumors: COOPERATE-2 trial.

    Get PDF
    Background : Several studies have demonstrated the antitumor activity of first-generation somatostatin analogs (SSAs), primarily targeting somatostatin receptor (sstr) subtypes 2 and 5, in neuroendocrine tumors (NET). Pasireotide, a second-generation SSA, targets multiple sstr subtypes. We compared the efficacy and safety of pasireotide plus everolimus to everolimus alone in patients with advanced, well-differentiated, progressive pancreatic NET. Patients and methods : Patients were randomized 1 : 1 to receive a combination of everolimus (10 mg/day, orally) and pasireotide long-acting release (60 mg/28 days, intramuscularly) or everolimus alone (10 mg/day, orally); stratified by prior SSA use, and baseline serum chromogranin A and neuron-specific enolase. The primary end point was progression-free survival (PFS). Secondary end points included overall survival, objective response rate, disease control rate, and safety. Biomarker response was evaluated in an exploratory analysis. Results : Of 160 patients enrolled, 79 were randomized to the combination arm and 81 to the everolimus arm. Baseline demographics and disease characteristics were similar between the treatment arms. No significant difference was observed in PFS: 16.8 months in combination arm versus 16.6 months in everolimus arm (hazard ratio, 0.99; 95% confidence interval, 0.64–1.54). Partial responses were observed in 20.3% versus 6.2% of patients in combination arm versus everolimus arm; however, overall disease control rate was similar (77.2% versus 82.7%, respectively). No significant improvement was observed in median overall survival. Adverse events were consistent with the known safety profile of both the drugs; grade 3 or 4 fasting hyperglycemia was seen in 37% versus 11% of patients, respectively. Conclusions The addition of pasireotide to everolimus was not associated with the improvement in PFS compared with everolimus alone in this study. Further studies to delineate mechanisms by which SSAs slow tumor growth in NET are warranted

    Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial

    No full text
    BACKGROUND The addition of bevacizumab to chemotherapy improves progression-free survival in metastatic breast cancer and pathological complete response rates in the neoadjuvant setting. Micrometastases are dependent on angiogenesis, suggesting that patients might benefit from anti-angiogenic strategies in the adjuvant setting. We therefore assessed the addition of bevacizumab to chemotherapy in the adjuvant setting for women with triple-negative breast cancer. METHODS For this open-label, randomised phase 3 trial we recruited patients with centrally confirmed triple-negative operable primary invasive breast cancer from 360 sites in 37 countries. We randomly allocated patients aged 18 years or older (1:1 with block randomisation; stratified by nodal status, chemotherapy [with an anthracycline, taxane, or both], hormone receptor status [negative vs low], and type of surgery) to receive a minimum of four cycles of chemotherapy either alone or with bevacizumab (equivalent of 5 mg/kg every week for 1 year). The primary endpoint was invasive disease-free survival (IDFS). Efficacy analyses were based on the intention-to-treat population, safety analyses were done on all patients who received at least one dose of study drug, and plasma biomarker analyses were done on all treated patients consenting to biomarker analyses and providing a measurable baseline plasma sample. This trial is registered with ClinicalTrials.gov, number NCT00528567. FINDINGS Between Dec 3, 2007, and March 8, 2010, we randomly assigned 1290 patients to receive chemotherapy alone and 1301 to receive bevacizumab plus chemotherapy. Most patients received anthracycline-containing therapy; 1638 (63%) of the 2591 patients had node-negative disease. At the time of analysis of IDFS, median follow-up was 31·5 months (IQR 25·6-36·8) in the chemotherapy-alone group and 32·0 months (27·5-36·9) in the bevacizumab group. At the time of the primary analysis, IDFS events had been reported in 205 patients (16%) in the chemotherapy-alone group and in 188 patients (14%) in the bevacizumab group (hazard ratio [HR] in stratified log-rank analysis 0·87, 95% CI 0·72-1·07; p=0·18). 3-year IDFS was 82·7% (95% CI 80·5-85·0) with chemotherapy alone and 83·7% (81·4-86·0) with bevacizumab and chemotherapy. After 200 deaths, no difference in overall survival was noted between the groups (HR 0·84, 95% CI 0·64-1·12; p=0·23). Exploratory biomarker assessment suggests that patients with high pre-treatment plasma VEGFR-2 might benefit from the addition of bevacizumab (Cox interaction test p=0·029). Use of bevacizumab versus chemotherapy alone was associated with increased incidences of grade 3 or worse hypertension (154 patients [12%] vs eight patients [1%]), severe cardiac events occurring at any point during the 18-month safety reporting period (19 [1%] vs two [<0·5%]), and treatment discontinuation (bevacizumab, chemotherapy, or both; 256 [20%] vs 30 [2%]); we recorded no increase in fatal adverse events with bevacizumab (four [<0·5%] vs three [<0·5%]). INTERPRETATION Bevacizumab cannot be recommended as adjuvant treatment in unselected patients with triple-negative breast cancer. Further follow-up is needed to assess the potential effect of bevacizumab on overall survival
    corecore