7 research outputs found

    Fluid challenges in intensive care: the FENICE study A global inception cohort study

    Get PDF
    Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account

    Reliability of a new 4th generation FloTrac algorithm to track cardiac output changes in patients receiving phenylephrine

    No full text
    Phenylephrine is often used to treat intra-operative hypotension. Previous studies have shown that the FloTrac cardiac monitor may overestimate cardiac output (CO) changes following phenylephrine administration. A new algorithm (4(th) generation) has been developed to improve performance in this setting. We performed a prospective observational study to assess the effects of phenylephrine administration on CO values measured by the 3(rd) and 4(th) generation FloTrac algorithms. 54 patients were enrolled in this study. We used the Nexfin, a pulse contour method shown to be insensitive to vasopressor administration, as the reference method. Radial arterial pressures were recorded continuously in patients undergoing surgery. Phenylephrine administration times were documented. Arterial pressure recordings were subsequently analyzed offline using three different pulse contour analysis algorithms: FloTrac 3(rd) generation (G3), FloTrac 4(th) generation (G4), and Nexfin (nf). One minute of hemodynamic measurements was analyzed immediately before phenylephrine administration and then repeated when the mean arterial pressure peaked. A total of 157 (4.6 ± 3.2 per patient, range 1–15) paired sets of hemodynamic recordings were analyzed. Phenylephrine induced a significant increase in stroke volume (SV) and CO with the FloTrac G3, but not with FloTrac G4 or Nexfin algorithms. Agreement between FloTrac G3 and Nexfin was: 0.23±1.19 l/min and concordance was 51.1%. In contrast, agreement between FloTrac G4 and Nexfin was: 0.19±0.86 l/min and concordance was 87.2%. In conclusion, the pulse contour method of measuring CO, as implemented in FloTrac 4th generation algorithm, has significantly improved its ability to track the changes in CO induced by phenylephrine

    Hemodynamic, echocardiographic and neurohormonal effects of istaroxime,a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure

    Get PDF
    Objectives We examined the hemodynamic, echocardiographic, and neurohormonal effects of intravenous istaroxime in patients hospitalized with heart failure (HF). Background Istaroxime is a novel intravenous agent with inotropic and lusitropic properties related to inhibition of Na/K adenosine triphosphatase (ATPase) and stimulation of sarcoplasmic reticulum calcium ATPase. Methods One hundred twenty patients admitted with HF and reduced systolic function were instrumented with a pulmonary artery catheter within 48 h of admission. Three sequential cohorts of 40 patients each were randomized 3:1 istaroxime:placebo to a continuous 6-h infusion. The first cohort received 0.5 g/kg/min, the second 1.0 g/kg/min, and the third 1.5 g/kg/min istaroxime or placebo. Results All doses of istaroxime lowered pulmonary capillary wedge pressure (PCWP), the primary end point (mean SD: 3.2 6.8 mm Hg, 3.3 5.5 mm Hg, and 4.7 5.9 mm Hg compared with 0.0 3.6 mm Hg with placebo; p 0.05 for all doses). Istaroxime significantly decreased heart rate (HR) and increased systolic blood pressure (SBP). Cardiac index increased and left ventricular end-diastolic volume decreased significantly only with 1.5 g/kg/min. On echocardiography, left ventricular end diastolic volume and deceleration time improved with 1.5 g/kg/min. There were no changes in neurohormones, renal function, or troponin I. Adverse events were not life threatening and were dose related. Conclusions In patients hospitalized with HF, istaroxime improved PCWP and possibly diastolic function. In contrast to available inotropes, istaroxime increased SBP and decreased HR. (A Phase II Trial to Assess Hemodynamic Effects of Istaroxime in Pts With Worsening HF and Reduced LV Systolic Function [HORIZON-HF]; NCT00616161) (JAm Coll Cardiol 2008;51:2276–85) © 2008 by the American College of Cardiology Foundatio
    corecore