591 research outputs found

    Remote preparation of arbitrary ensembles and quantum bit commitment

    Full text link
    The Hughston-Jozsa-Wootters theorem shows that any finite ensemble of quantum states can be prepared "at a distance", and it has been used to demonstrate the insecurity of all bit commitment protocols based on finite quantum systems without superselection rules. In this paper, we prove a generalized HJW theorem for arbitrary ensembles of states on a C*-algebra. We then use this result to demonstrate the insecurity of bit commitment protocols based on infinite quantum systems, and quantum systems with Abelian superselection rules.Comment: 21 pages, LaTeX. Version 2: Proofs expanded and made more self-contained; added an example of a bit commitment protocol with continuous ensemble

    The non-relativistic limit of (central-extended) Poincare group and some consequences for quantum actualization

    Get PDF
    The nonrelativistic limit of the centrally extended Poincar\'e group is considered and their consequences in the modal Hamiltonian interpretation of quantum mechanics are discussed [ O. Lombardi and M. Castagnino, Stud. Hist. Philos. Mod. Phys 39, 380 (2008) ; J. Phys, Conf. Ser. 128, 012014 (2008) ]. Through the assumption that in quantum field theory the Casimir operators of the Poincar\'e group actualize, the nonrelativistic limit of the latter group yields to the actualization of the Casimir operators of the Galilei group, which is in agreement with the actualization rule of previous versions of modal Hamiltonian interpretation [ Ardenghi et al., Found. Phys. (submitted)

    Explaining the unobserved: why quantum mechanics is not only about information

    Get PDF
    A remarkable theorem by Clifton, Bub and Halvorson (2003)(CBH) characterizes quantum theory in terms of information--theoretic principles. According to Bub (2004, 2005) the philosophical significance of the theorem is that quantum theory should be regarded as a ``principle'' theory about (quantum) information rather than a ``constructive'' theory about the dynamics of quantum systems. Here we criticize Bub's principle approach arguing that if the mathematical formalism of quantum mechanics remains intact then there is no escape route from solving the measurement problem by constructive theories. We further propose a (Wigner--type) thought experiment that we argue demonstrates that quantum mechanics on the information--theoretic approach is incomplete.Comment: 34 Page

    Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging

    Get PDF
    We introduce an imaging modality that, by offsetting pixel-exposure times during capture of a single image frame, embeds temporal information in each frame. This allows simultaneous acquisition of full-resolution images at native detector frame rates and high-speed image sequences at reduced resolution, without increasing bandwidth requirements. We demonstrate this method using macroscopic and microscopic examples, including imaging calcium transients in heart cells at 250 Hz using a 10-Hz megapixel camera

    Recursive proof of the Bell-Kochen-Specker theorem in any dimension n>3n>3

    Full text link
    We present a method to obtain sets of vectors proving the Bell-Kochen-Specker theorem in dimension nn from a similar set in dimension dd (3≀d<n≀2d3\leq d<n\leq 2d). As an application of the method we find the smallest proofs known in dimension five (29 vectors), six (31) and seven (34), and different sets matching the current record (36) in dimension eight.Comment: LaTeX, 7 page

    Effects and Propositions

    Full text link
    The quantum logical and quantum information-theoretic traditions have exerted an especially powerful influence on Bub's thinking about the conceptual foundations of quantum mechanics. This paper discusses both the quantum logical and information-theoretic traditions from the point of view of their representational frameworks. I argue that it is at this level, at the level of its framework, that the quantum logical tradition has retained its centrality to Bub's thought. It is further argued that there is implicit in the quantum information-theoretic tradition a set of ideas that mark a genuinely new alternative to the framework of quantum logic. These ideas are of considerable interest for the philosophy of quantum mechanics, a claim which I defend with an extended discussion of their application to our understanding of the philosophical significance of the no hidden variable theorem of Kochen and Specker.Comment: Presented to the 2007 conference, New Directions in the Foundations of Physic

    Quantum mechanics is about quantum information

    Full text link
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive -- just as, following Einstein's special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.Comment: 17 pages, forthcoming in Foundations of Physics Festschrift issue for James Cushing. Revised version: some paragraphs have been added to the final section clarifying the argument, and various minor clarifying remarks have been added throughout the tex

    A model balancing cooperation and competition explains our right-handed world and the dominance of left-handed athletes

    Get PDF
    An overwhelming majority of humans are right-handed. Numerous explanations for individual handedness have been proposed, but this population-level handedness remains puzzling. Here we use a minimal mathematical model to explain this population-level hand preference as an evolved balance between cooperative and competitive pressures in human evolutionary history. We use selection of elite athletes as a test-bed for our evolutionary model and account for the surprising distribution of handedness in many professional sports. Our model predicts strong lateralization in social species with limited combative interaction, and elucidates the rarity of compelling evidence for "pawedness" in the animal world.Comment: 5 pages of text and 3 figures in manuscript, 8 pages of text and two figures in supplementary materia

    Interfacial mixing in heteroepitaxial growth

    Full text link
    We investigate the growth of a film of some element B on a substrate made of another substrance A in a model of molecular beam epitaxy. A vertical exchange mechanism allows the A-atoms to stay on the growing surface with a certain probability. Using kinetic Monte Carlo simulations as well as scaling arguments, the incorporation of the A's into the growing B-layer is investigated. Moreover we develop a rate equation theory for this process. In the limit of perfect layer-by-layer growth, the density of A-atoms decays in the B-film like the inverse squared distance from the interface. The power law is cut off exponentially at a characteristic thickness of the interdiffusion zone that depends on the rate of exchange of a B-adatom with an A-atom in the surface and on the system size. Kinetic roughening changes the exponents. Then the thickness of the interdiffusion zone is determined by the diffusion length.Comment: 11 pages, 11 figure

    Kochen-Specker theorem for a single qubit using positive operator-valued measures

    Full text link
    A proof of the Kochen-Specker theorem for a single two-level system is presented. It employs five eight-element positive operator-valued measures and a simple algebraic reasoning based on the geometry of the dodecahedron.Comment: REVTeX4, 4 pages, 2 figure
    • 

    corecore