45 research outputs found

    Water use of young apple trees related to leaf area development

    No full text
    Present paper describes an investigation concerning seasonal water use and foliage area development of apple trees. Sap flow velocity was measured in the trunks of five years old apple trees cv. `Florina'/M.26 by a thermal dissipation (Granier) method from 20th of May to the end of September in 1998. The development of foliage area was estimated by a method including leaf area measurements, recording of leaves and shoot length. The foliage area reached to 70% of the maximum yearly value at beginning of June. The remaining 30% developed to the end of August. The leaf area specific water use was considerable higher in June and July, than in second part of summer. The trends of ET-FAO and water use curves differed mostly in the late season: the ET-FAO curve falls quite in September compared to August, whereas the value of water use was a similar as in August. This insensitivity of ET-FAO in this period may be a great disadvantage while using the Penman-Monteith equation in irrigation scheduling of apple

    Water use of young apple trees related to leaf area development

    No full text
    Present paper describes an investigation concerning seasonal water use and foliage area development of apple trees. Sap flow velocity was measured in the trunks of five years old apple trees cv. `Florina'/M.26 by a thermal dissipation (Granier) method from 20th of May to the end of September in 1998. The development of foliage area was estimated by a method including leaf area measurements, recording of leaves and shoot length. The foliage area reached to 70% of the maximum yearly value at beginning of June. The remaining 30% developed to the end of August. The leaf area specific water use was considerable higher in June and July, than in second part of summer. The trends of ET-FAO and water use curves differed mostly in the late season: the ET-FAO curve falls quite in September compared to August, whereas the value of water use was a similar as in August. This insensitivity of ET-FAO in this period may be a great disadvantage while using the Penman-Monteith equation in irrigation scheduling of apple

    Contributions to the resumption of growth in ecodormant buds of apple

    No full text
    The resumption of development in ecodormant buds in terms of establishing a functional vascular connection between the inflorescence primordia and spur tissues in apple trees was investigated. Differentiation of the xylem elements could be observed first in the pedicel of the flower primordium, in the middle of January. Much later (at the beginning of April) there were mature xylem vessels in the wall of the receptacle and, merely a procambial strand for the ovule primordium which was at this time an undifferentiated protrusion of meristematic cells, only. As for phenological development of buds incubated at a temperature of 20 °C, it was the slowest in buds sampled in January, faster in buds sampled in the middle of February and, buds from the middle of March responded very quickly. The function of temperatures needed both for xylem differentiation and for the flower primordium to achieve maturity is pointed out. The nature of frost damage in vessel elements, as well the relationship between chilling requirement and growth features of apple cultivars will be discussed

    Effects of crop load on tree water use in apple (Malus x domestica Borkh.)

    No full text
    Sap flow rate measurements were carried out during two consecutive ('on' and 'off') years in an apple orchard cv. 'Florina' M.26 to analyse the effects of various crop load on tree water use. Sap flow rate was measured by thermal dissipation method in trunks of nine trees from June to the harvest. Crop load was between 0.2-9.0 fruits • cm -2 of trunk cross section area (equal to 0.5-35.0 fruits•m-2 of leaf area), trunk diameter varied between 4.7-8.7 cm. Total leaf area was estimated by leaf counting or using shoot girth and leaf area relationship. In both years, fruit growth rate was determined by measuring diameter of 280 marked fruits with 7 days frequency. Fruit volume calculated as a function of fruit diameter based on a previously determined relationship. Total leaf area of trees ranged from 4.4 to 19.5 m2 and it was closely related to trunk cross section area. At high crop load the fruit growth rate peaked in August with 0.51.tree-l.day-1 and the leaf area specific total fruit volume reached 61 m2 before the harvest. There was a linear relationship between total leaf area and daily water use, while the leaf area specific water use was influenced by crop load rate. The relationship was described by piecewise linear regression with the breakpoint at crop load rate of 12 fruits•m2 of leaf area. At low crop load the slope of the fitted regression line was less than at high crop load rate

    The effect of Regalis® (prohexadione calcium) on the reduction of fire blight (Erwinia amylovora) severity in apple trees

    No full text
    Due to the lack of effective and non-phytotoxic materials for control of the blossom and shoot blight phase of fire blight in pome fruit trees, two novel control strategies have emerged: shoot growth retardation by bioregulators and applying resistance inducer compounds. Prohexadione calcium (ProCa) is the active ingredient of the bioregulator Regalis® registered in several European countries. The reduction of shoot growth elongation is the most obvious effect of ProCa. Furthermore, it causes significant changes in the spectrum of flavonoids and their phenolic precursors, leading to the considerable reduction of susceptibility to fire blight. In Poland, potted one-year-old apple trees of cvs. Gala Must grafted on M.26 and Sampion on M.9 (in 2001) as well as Gala Must on P.60 (in 2002) were treated with Regalis® at a range of concentration of 250, 150 or 150 + 100 ppm, respectively. The inoculation of shoots was made with the strain No.691 of E. amylovora (107 cfu/ml), on the 7th and 21st'day after treatments with Regalis. In Hungary, during the years of 2002 and 2003 one-year-old container grown apple trees of the cvs. Idared/M.9 and Freedom/M.9 were treated with the prohexadione-Ca, the active ingredient of Regalis® 100, 150 or 200 ppm, two weeks before inoculation with the Ea 1 strain of E. amylovora (107 cfu/m1). In Poland, the suppression of fire blight in shoots reached up to 80%, depending on concentration and application time of Regalis®. In Hungary, the effect of prohexadione-Ca treatments, determined by the length of necrotic lesion developed, proved to be better than that of streptomycin used for comparison

    The effect of Regalis® (prohexadione calcium) on the reduction of fire blight (Erwinia amylovora) severity in apple trees

    No full text
    Due to the lack of effective and non-phytotoxic materials for control of the blossom and shoot blight phase of fire blight in pome fruit trees, two novel control strategies have emerged: shoot growth retardation by bioregulators and applying resistance inducer compounds. Prohexadione calcium (ProCa) is the active ingredient of the bioregulator Regalis® registered in several European countries. The reduction of shoot growth elongation is the most obvious effect of ProCa. Furthermore, it causes significant changes in the spectrum of flavonoids and their phenolic precursors, leading to the considerable reduction of susceptibility to fire blight. In Poland, potted one-year-old apple trees of cvs. Gala Must grafted on M.26 and Sampion on M.9 (in 2001) as well as Gala Must on P.60 (in 2002) were treated with Regalis® at a range of concentration of 250, 150 or 150 + 100 ppm, respectively. The inoculation of shoots was made with the strain No.691 of E. amylovora (107 cfu/ml), on the 7th and 21st'day after treatments with Regalis. In Hungary, during the years of 2002 and 2003 one-year-old container grown apple trees of the cvs. Idared/M.9 and Freedom/M.9 were treated with the prohexadione-Ca, the active ingredient of Regalis® 100, 150 or 200 ppm, two weeks before inoculation with the Ea 1 strain of E. amylovora (107 cfu/m1). In Poland, the suppression of fire blight in shoots reached up to 80%, depending on concentration and application time of Regalis®. In Hungary, the effect of prohexadione-Ca treatments, determined by the length of necrotic lesion developed, proved to be better than that of streptomycin used for comparison

    Field trials with non-bactericide products to control fire blight in apple orchards

    No full text
    Recently, novel strategies and chemical agents for prophylactic protection against the bacterial (Erwinia amylovora) disease fire blight are being sought. Resistance-inducing compounds, such as prohexadione-Ca represent promising alternatives. Prohexadione-Ca is the active ingredient of the bioregulator Regalis, currently being introduced in several European countries and overseas. Another product used in this study was Biomit Plussz, a leaf fertiliser providing harmonic supply of nutrient elements, the complete supply is assumed to improve the tolerance against diseases. Treatments' effects of both of these products were compared to the effectiveness of treatments with antibiotics repeated twice, three or four times a season. In the years of 2001 and 2002, the effectiveness of both Regalis and Biomit Plussz in reduction of incidence of shoot blight was similar, or proved to be superior to the check treatments consisting of repeated sprayings of antibiotics. Last year (2003) treatments of streptomycin resulted — although within the same magnitude — in a somewhat better control of shoot blight than sprayings with the other compounds. As regards severity of blossom blight, inconsistent results were recorded concerning both Regalis and Biomit Plussz. In general, prohexadione-Ca is less efficient for controlling flower infection by E. amylovora as compared to shoot infections, since successful prophylactic treatments are difficult to carry out early in the season. The highest effectiveness in fire blight management can, therefore, be achieved by using prohexadione-Ca (as preventive protection) in combination with streptomycin or other suitable antibiotics (as curative protection)
    corecore