14 research outputs found

    Improving Lunar Exploration with Robotic Follow-up

    Get PDF
    We are investigating how augmenting human field work with subsequent robot activity can improve lunar exploration. Robotic "follow-up" might involve: completing geology observations; making tedious or long-duration measurements of a target site or feature; curating samples in-situ; and performing unskilled, labor-intensive work. To study this technique, we have begun conducting a series of lunar analog field tests at Haughton Crater (Canada). Motivation: In most field geology studies on Earth, explorers often find themselves left with a set of observations they would have liked to make, or samples they would have liked to take, if only they had been able to stay longer in the field. For planetary field geology, we can imagine mobile robots - perhaps teleoperated vehicles previously used for manned exploration or dedicated planetary rovers - being deployed to perform such follow-up activities [1]

    Astrobee Guest Science Interface

    Get PDF
    At the end of 2018, Astrobee will launch three free-flying robots that will navigate the entire US segment of the ISS (International Space Station) and serve as a payload facility. The mechanical and electrical interfaces are now established and several payloads are being developed. Payload Interface: Astrobee is designed to host third party guest science program payloads (GSP payloads). Some GSP payloads may be software only, such as the Zero Robotics Finals Competition, which is currently hosted on SPHERES, and which will transition to Astrobee in 2019. Several GSP payloads with custom hardware, such as the Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project RFID reader, are already under development. These payloads will attach in the Astrobee payload bay

    Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    Get PDF
    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles

    Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    Get PDF
    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting

    Instrument deployment for Mars rovers

    No full text
    require sufficient autonomy to robustly approach rock targets and place an instrument in contact with them. It took the 1997 Sojourner Mars rover between 3 and 5 communications cycles to accomplish this. This paper describes the technologies being developed and integrated onto the NASA Ames K9 prototype Mars rover to both accomplish this in one cycle, and to extend the complexity and duration of operations that a Mars rover can accomplish without intervention from mission contro

    Robotic Follow-up for Human Exploration

    No full text
    corecore