17 research outputs found
Temporal sequence of the human RBCs' vesiculation observed in nano-scale with application of AFM and complementary techniques
Based on the multimodal characterization of human red blood cells (RBCs), the link between the storage-related sequence of the nanoscale changes in RBC membranes in the relation to their biochemical profile as well as mechanical and functional properties was presented. On the background of the accumulation of RBCs waste products, programmed cell death and impaired rheological properties, progressive alterations in the RBC membranes including changes in their height and diameter as well as the in situ characterization of RBC-derived microparticles (RMPs) on the RBCs surface were presented. The advantage of atomic force microscopy (AFM) in RMPs visualization, even at the very early stage of vesiculation, was shown based on the results revealed by other reference techniques. The nanoscale characterization of RMPs was correlated with a decrease in cholesterol and triglycerides levels in the RBC membranes, proving the link between the lipids leakage from RBCs and the process of vesiculation
Sex-specific differences of adenosine triphosphate levels in red blood cells isolated from ApoE/LDLR double-deficient mice
In this study for the first time, we investigated the correlation between sex-specific
differences in adenosine triphosphate (ATP) levels in red blood cells (RBCs) and their
mechanical, biochemical, and morphological alterations during the progression of
atherosclerosis in ApoE/LDLR double-deficient () mice. Our results indicate
that both sex and age affect alterations in RBCs of both and C57BL/6J
mice. When compared with male RBCs, female RBCs were characterized by lower basal
ATP and mean corpuscular hemoglobin concentration (MCHC), higher hemoglobin
concentration (HGB), mean corpuscular volume (MCV), mean corpuscular hemoglobin
(MCH), deformability, and phosphatidylserine (PS) exposure levels, regardless of age in
both, and C57BL/6J mice. mice compared with age-matched
controls showed lower basal ATP levels regardless of age and sex. Intracellular ATP level
of RBCs was decreased solely in senescent female C57BL/6J mice, while it was elevated
in males. Basal extracellular ATP levels were 400 times lower than corresponding
intracellular level. In conclusion, basal ATP levels, RBC morphology, deformability, PS
exposure levels alterations are sex-dependent in mice. Changes in basal ATP levels were
correlated with PS exposure and trends of changes in MCV. Trends of changes of the
most RBC parameters were similar in both sexes of mice compared with
age-matched controls, however, their kinetics and levels vary greatly between different
stages of disease progression
An insight into the stages of ion leakage during red blood cell storage
Packed red blood cells (pRBCs), the most commonly transfused blood product, are exposed to environmental disruptions during storage in blood banks. In this study, temporal sequence of changes in the ion exchange in pRBCs was analyzed. Standard techniques commonly used in electrolyte measurements were implemented. The relationship between ion exchange and red blood cells (RBCs) morphology was assessed with use of atomic force microscopy with reference to morphological parameters. Variations observed in the Na+, K+, Cl−, H+, HCO3−, and lactate ions concentration show a complete picture of singly-charged ion changes in pRBCs during storage. Correlation between the rate of ion changes and blood group type, regarding the limitations of our research, suggested, that group 0 is the most sensitive to the time-dependent ionic changes. Additionally, the impact of irreversible changes in ion exchange on the RBCs membrane was observed in nanoscale. Results demonstrate that the level of ion leakage that leads to destructive alterations in biochemical and morphological properties of pRBCs depend on the storage timepoint
Secondary structure alterations of RBC assessed by FTIR-ATR in correlation to 2,3-DPG levels in mice
Label-free testing strategy to evaluate packed red blood cell quality before transfusion to leukemia patients
Abstract Patients worldwide require therapeutic transfusions of packed red blood cells (pRBCs), which is applied to the high-risk patients who need periodic transfusions due to leukemia, lymphoma, myeloma and other blood diseases or disorders. Contrary to the general hospital population where the transfusions are carried out mainly for healthy trauma patients, in case of high-risk patients the proper quality of pRBCs is crucial. This leads to an increased demand for efficient technology providing information on the pRBCs alterations deteriorating their quality. Here we present the design of an innovative, label-free, noninvasive, rapid Raman spectroscopy-based method for pRBCs quality evaluation, starting with the description of sample measurement and data analysis, through correlation of spectroscopic results with reference techniques' outcomes, and finishing with methodology verification and its application in clinical conditions. We have shown that Raman spectra collected from the pRBCs supernatant mixture with a proper chemometric analysis conducted for a minimum one ratio of integral intensities of the chosen Raman marker bands within the spectrum allow evaluation of the pRBC quality in a rapid, noninvasive, and free-label manner, without unsealing the pRBCs bag. Subsequently, spectroscopic data were compared with predefined reference values, either from pRBCs expiration or those defining the pRBCs quality, allowing to assess their utility for transfusion to patients with acute myeloid leukemia (AML) and lymphoblastic leukemia (ALL)
Spectroscopic signature of red blood cells in a D-galactose-induced accelerated aging model
This work presents a semi-quantitative spectroscopic approach, including FTIR-ATR and Raman spectroscopies, for the biochemical analysis of red blood cells (RBCs) supported by the biochemical, morphological and rheological reference techniques. This multi-modal approach provided the description of the RBC alterations at the molecular level in a model of accelerated aging induced by administration of D-galactose (D-gal), in comparison to natural aging. Such an approach allowed to conclude that most age-related biochemical RBC membrane changes (a decrease in lipid unsaturation and the level of phospholipids, or an increase in acyl chain shortening) as well as alterations in the morphological parameters and RBC deformability are well reflected in the D-gal model of accelerated aging. Similarly, as in natural aging, a decrease in LDL level in blood plasma and no changes in the fraction of glucose, creatinine, total cholesterol, HDL, iron, or triglycerides were observed during the course of accelerated aging. Contrary to natural aging, the D-gal model led to an increase in cholesterol esters and the fraction of total esterified lipids in RBC membranes, and evoked significant changes in the secondary structure of the membrane proteins. Moreover, a significant decrease in the phosphorous level of blood plasma was specific for the D-gal model. On the other hand, natural aging induced stronger changes in the secondary structures of the proteins of the RBCs' interior. This work proves that research on the aging mechanism, especially in circulation-related diseases, should employ the D-gal model with caution. Nonetheless, the D-gal model enables to imitate age-related rheological alterations in RBCs, although they are partially derived from different changes observed in the RBC membrane at the molecular level
Temporal relationship between systemic endothelial dysfunction and alterations in erythrocyte function in a murine model of chronic heart failure
Endothelial dysfunction (ED) and red blood cell distribution width (RDW) are both prognostic factors in heart failure (HF), but the relationship between them is not clear. In this study, we used a unique mouse model of chronic HF driven by cardiomyocyte-specific overexpression of activated Gαq protein (Tgαq*44 mice) to characterise the relationship between the development of peripheral ED and the occurrence of structural nanomechanical and biochemical changes in red blood cells (RBCs).Systemic ED was detected in vivo in 8-month-old Tgαq*44 mice, as evidenced by impaired acetylcholine-induced vasodilation in the aorta and increased endothelial permeability in the brachiocephalic artery. ED in the aorta was associated with impaired nitric oxide (NO) production in the aorta and diminished systemic NO bioavailability. ED in the aorta was also characterised by increased superoxide and eicosanoid production. In 4- to 6-month-old Tgαq*44 mice, RBC size and membrane composition displayed alterations that did not result in significant changes in their nanomechanical and functional properties. However, 8-month-old Tgαq*44 mice presented greatly accentuated structural and size changes and increased RBC stiffness. In 12-month-old Tgαq*44 mice, the erythropathy was featured by severely altered RBC shape and elasticity, increased RDW, impaired RBC deformability, and increased oxidative stress (GSH/GSSH ratio). Moreover, RBCs taken from 12-month-old Tgαq*44 mice, but not from 12-month-old FVB mice, co-incubated with aortic rings from FVB mice, induced impaired endothelium-dependent vasodilation and this effect was partially reversed by an arginase inhibitor (ABH, 2(S)-amino-6-boronohexanoic acid).In the Tgαq*44 murine model of HF, systemic endothelial dysfunction accelerates erythropathy and, conversely, erythropathy may contribute to endothelial dysfunction. These results suggest that erythropathy may be regarded as a marker and a mediator of systemic endothelial dysfunction in HF. In particular, targeting RBC arginase may represent a novel treatment strategy for systemic endothelial dysfunction in HF. RBC arginase and possibly other RBC-mediated mechanisms may represent novel therapeutic targets for systemic endothelial dysfunction in HF.Endothelial dysfunction (ED) and red blood cell distribution width (RDW) both have prognostic value for heart failure (HF), but it is not known whether these pathologies are related. We comprehensively characterized endothelial and RBC functional status in a unique murine model of chronic heart failure with a prolonged time course of HF progression. Our results suggest that ED accelerates erythropathy and, conversely, erythropathy may contribute to ED. Accordingly, erythropathy in HF reflects ED and involves various changes (in functional, structural, nanomechanical, and biochemical levels) that could have diagnostic and therapeutic significance for HF