2,701 research outputs found
Polo-like kinase 1 siRNA-607 induces mitotic arrest and apoptosis in human nasopharyngeal carcinoma cells
Polo-like kinase (Plk) 1 is overexpressed in many human malignancies including nasopharyngeal carcinoma, indicating its potential as a therapeutic target. Recently, using a simple cellular morphologybased strategy, we have identified several novel effective siRNAs against Plk1 including Plk1 siRNA- 607. In this study, we further investigated the effects of Plk1 siRNA-607 in human nasopharyngeal carcinoma cell line, HNE-1. Real time RT-PCR and Western blot indicated that Plk1 siRNA-607 transfection resulted in a significant inhibition in Plk1 expression in the HNE-1 cells. Furthermore, cell cycle, cell growth and apoptosis analysis clearly indicated that Plk1 siRNA-607 caused a dramatic mitotic cell cycle arrest followed by massive apoptotic cell death, and eventually resulted in a significant decrease in growth and viability of the nasopharyngeal carcinoma cells. Given that Plk1 has been widely accepted as a novel efficient target for cancer therapy, these results suggested that Plk1 siRNA-607 could be further developed for the treatment of human nasopharyngeal carcinoma.Key words: Nasopharyngeal carcinoma, Plk1, RNA silencing, cell cycle, apoptosis
Negative CT Contrast Agents for the Diagnosis of Malignant Osteosarcoma
© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The current positive computed tomography (CT) contrast agents (PCTCAs) including clinical iodides, present high CT density value (CT-DV). However, they are incapable for the accurate diagnosis of some diseases with high CT-DV, such as osteosarcoma. Because bones and PCTCAs around osteosarcoma generate similar X-ray attenuations. Here, an innovative strategy of negative CT contrast agents (NCTCAs) to reduce the CT-DV of osteosarcoma is proposed, contributing to accurate detection of osteosarcoma. Hollow mesoporous silica nanoparticles, loading ammonia borane molecules and further modified by polyethylene glycol, are synthesized as NCTCAs for the diagnosis of osteosarcoma. The nanocomposites can produce H2 in situ at osteosarcoma areas by responding to the acidic microenvironment of osteosarcoma, resulting in nearly 20 times reduction of CT density in osteosarcoma. This helps form large CT density contrast between bones and osteosarcoma, and successfully achieves accurate diagnosis of osteosarcoma. Meanwhile, The NCTCAs strategy greatly expands the scope of CT application, and provides profound implications for the precise clinical diagnosis, treatment, and prognosis of diseases
STCF conceptual design report (Volume 1): Physics & detector
The super τ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies
The effect of N-glycosylation of SARS-CoV-2 spike protein on the virus interaction with the host cell ACE2 receptor
The densely glycosylated spike (S) protein highly exposed on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) surface mediates host cell entry by binding to the receptor angiotensin-converting enzyme 2 (ACE2). However, the role of glycosylation has not been fully understood. In this study, we investigated the effect of different N-glycosylation of S1 protein on its binding to ACE2. Using real-time surface plasmon resonance assay the negative effects were demonstrated by the considerable increase of binding affinities of de-N-glycosylated S1 proteins produced from three different expression systems including baculovirus-insect, Chinese hamster ovarian and two variants of human embryonic kidney 293 cells. Molecular dynamic simulations of the S1 protein-ACE2 receptor complex revealed the steric hindrance and Coulombic repulsion effects of different types of N-glycans on the S1 protein interaction with ACE2. The results should contribute to future pathological studies of SARS-CoV-2 and therapeutic development of Covid-19, particularly using recombinant S1 proteins as models
COMPREHENSIVE STUDY OF OPTICAL, PHYSICAL, CHEMICAL, AND RADIATIVE PROPERTIES OF TOTAL COLUMNAR ATMOSPHERIC AEROSOLS OVER CHINA An Overview of Sun-Sky Radiometer Observation Network (SONET) Measurements
AbstractAn overview of Sun–Sky Radiometer Observation Network (SONET) measurements in China is presented. Based on observations at 16 distributed SONET sites in China, atmospheric aerosol parameters are acquired via standardization processes of operational measurement, maintenance, calibration, inversion, and quality control implemented since 2010. A climatology study is performed focusing on total columnar atmospheric aerosol characteristics, including optical (aerosol optical depth, ÅngstrÖm exponent, fine-mode fraction, single-scattering albedo), physical (volume particle size distribution), chemical composition (black carbon; brown carbon; fine-mode scattering component, coarse-mode component; and aerosol water), and radiative properties (aerosol radiative forcing and efficiency). Data analyses show that aerosol optical depth is low in the west but high in the east of China. Aerosol composition also shows significant spatial and temporal variations, leading to noticeable diversities in optical and physical property patterns. In west and north China, aerosols are generally affected by dust particles, while monsoon climate and human activities impose remarkable influences on aerosols in east and south China. Aerosols in China exhibit strong light-scattering capability and result in significant radiative cooling effects.</jats:p
Shape Retrieval of Non-rigid 3D Human Models
3D models of humans are commonly used within computer graphics and vision, and so the ability to distinguish between body shapes is an important shape retrieval problem. We extend our recent paper which provided a benchmark for testing non-rigid 3D shape retrieval algorithms on 3D human models. This benchmark provided a far stricter challenge than previous shape benchmarks. We have added 145 new models for use as a separate training set, in order to standardise the training data used and provide a fairer comparison. We have also included experiments with the FAUST dataset of human scans. All participants of the previous benchmark study have taken part in the new tests reported here, many providing updated results using the new data. In addition, further participants have also taken part, and we provide extra analysis of the retrieval results. A total of 25 different shape retrieval methods are compared
Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Mediates Neuronal Aβ42 Uptake and Lysosomal Trafficking
Alzheimer's disease (AD) is characterized by the presence of early intraneuronal deposits of amyloid-beta 42 (Abeta42) that precede extracellular amyloid deposition in vulnerable brain regions. It has been hypothesized that endosomal/lysosomal dysfunction might be associated with the pathological accumulation of intracellular Abeta42 in the brain. Our previous findings suggest that the LDL receptor-related protein 1 (LRP1), a major receptor for apolipoprotein E, facilitates intraneuronal Abeta42 accumulation in mouse brain. However, direct evidence of neuronal endocytosis of Abeta42 through LRP1 is lacking.Here we show that LRP1 endocytic function is required for neuronal Abeta42 uptake. Overexpression of a functional LRP1 minireceptor, mLRP4, increases Abeta42 uptake and accumulation in neuronal lysosomes. Conversely, knockdown of LRP1 expression significantly decreases neuronal Abeta42 uptake. Disruptions of LRP1 endocytic function by either clathrin knockdown or by removal of its cytoplasmic tail decreased both uptake and accumulation of Abeta42 in neurons. Finally, we show that LRP1-mediated neuronal accumulation of Abeta42 is associated with increased cellular toxicity.These results demonstrate that LRP1 endocytic function plays an important role in the uptake and accumulation of Abeta42 in neuronal lysosomes. These findings emphasize the central function of LRP1 in neuronal Abeta metabolism
- …