43 research outputs found

    Silver selective electrodes based on thioether functionalized calix[4]arenes as ionophores

    Get PDF
    Silver selective electrodes based on thioether functionalized calix[4]arenes 1 and 2 as ionophores were investigated. For both ionophores the selectivity coefficients (log kAg,M) were lower than −2.2 for Hg(II) and lower than −4.6 for other cations tested. The best results were obtained with membranes containing dithioether functionalized calix[4]arene (ionophore 2), potassium tetrakis(4-chlorophenyl) borate (KTpCIPB) and bis(1-butylpentyl)adipate (BBPA) as a plasticizer. The Ag(I)-response functions exhibited almost theoretical Nernstian slopes in the activity range 10−6–10−1M of silver ions.\ud \u

    Effect of a high surface-to-volume ratio on fluorescence-based assays

    Get PDF
    In the work discussed in this paper, the effect of a high surface-to-volume ratio of a microfluidic detection cell on fluorescence quenching was studied. It was found that modification of the geometry of a microchannel can provide a wider linear range. This is a phenomenon which should be taken into consideration when microfluidic systems with fluorescence detection are developed. The dependence of the linear range for fluorescein on the surface-to-volume ratio was determined. Both fluorescence inner-filter effects and concentration self-quenching were taken into consideration. It was found that inner-filter effects have little effect on the extent of the linear range on the microscale. [Figure: see text

    Ein selbstassoziierender difunktioneller Rezeptor

    Get PDF
    Durch Komplexierung eines Na+ ‐Ions „einschalten” lĂ€ĂŸt sich die FĂ€higkeit des Kationenrezeptors 1, eines Calixarens, WasserstoffbrĂŒckenbindungen zwischen der Diamidopyridingruppe und einer komplementĂ€ren Gruppe wie Thymin zu bilden. Ist diese ihrerseits an einen Anionenrezeptor (z.B. ein metalliertes Porphyrin) gebunden, erhĂ€lt man einen nichtkovalent zusammengesetzten, difunktionellen Rezeptor, in dem Kation und Anion eines anorganischen Salzes wie NaSCN gleichzeitig komplexiert vorliegen

    Why Can Organoids Improve Current Organ-on-Chip Platforms?

    No full text
    Preclinical studies are the first stage of introducing a new potential drug to the pharmaceutical market. Many of the compounds with promising results approved in the preclinical stage show poor prognosis during the first stage of clinical studies, which is connected with inadequate in vitro and in vivo models used in this stage. Both basic in vitro models, and in vivo animal models do not represent the human conditions. Therefore, scientists work on creating an appropriate model that will highly reproduce the characteristics of the human body. The solution could be an organoids model: a laboratory-produced human miniature organ, grown in a specially designed Organ-on-Chip microfluidic tools. This review focuses on characterizing the 3D cell culture types, focusing mainly on organoids, the Organ-on-Chip approach, and presenting the latest reports about the application of their combination in biological research, including toxicological studies

    >

    No full text

    Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis.

    No full text
    Acoustophoresis is a method well suited for cell and microbead separation or concentration for downstream analysis in microfluidic settings. One of the main limitations that acoustophoresis share with other microfluidic techniques is that the separation efficiency is poor for particle-rich suspensions. We report that flow laminated liquids can be relocated in a microchannel when exposed to a resonant acoustic field. Differences in acoustic impedance between two liquids cause migration of the high-impedance liquid towards an acoustic pressure node. In a set of experiments we charted this phenomenon and show herein that it can be used to either relocate liquids with respect to each other, or to stabilize the interface between them. This resulted in decreased medium carry-over when transferring microbeads (4% by volume) between suspending liquids using acoustophoresis. Furthermore we demonstrate that acoustic relocation of liquids occurs for impedance differences as low as 0.1%

    Investigation of the Therapeutic Potential of New Antidiabetic Compounds Using Islet-on-a-Chip Microfluidic Model

    No full text
    Nowadays, diabetes mellitus is one of the most common chronic diseases in the world. Current research on the treatment of diabetes combines many fields of science, such as biotechnology, transplantology or engineering. Therefore, it is necessary to develop new therapeutic strategies and preventive methods. A newly discovered class of lipids—Palmitic Acid Hydroxy Stearic Acid (PAHSA) has recently been proposed as an agent with potential therapeutic properties. In this research, we used an islet-on-a-chip microfluidic 3D model of pancreatic islets (pseudoislets) to study two isomers of PAHSA: 5-PAHSA and 9-PAHSA as potential regulators of proliferation, viability, insulin and glucagon expression, and glucose-stimulated insulin and glucagon secretion. Due to the use of the Lab-on-a-chip systems and flow conditions, we were able to reflect conditions similar to in vivo. In addition, we significantly shortened the time of pseudoislet production, and we were able to carry out cell culture, microscopic analysis and measurements using a multi-well plate reader at the same time on one device. In this report we showed that under microfluidic conditions PAHSA, especially 5-PAHSA, has a positive effect on pseudoislet proliferation, increase in cell number and mass, and glucose-stimulated insulin secretion, which may qualify it as a compound with potential therapeutic properties
    corecore