10 research outputs found

    Relaxin and Preterm Birth

    Get PDF
    Preterm birth (PTB) is a global problem with a high incidence in the developing world. Relaxin (RLN) has classically been associated with parturition, but its role(s) in the human have been difficult to determine. For the first time, we bring together the systemic (ovarian) and autocrine/ paracrine (intrauterine) sources of RLN, in an attempt to understand how RLN contributes to PTB in women

    Cloning, Expression, and Functional Characterization of Relaxin Receptor (Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 7) Splice Variants from Human Fetal Membranes

    No full text
    The relaxin receptor [leucine-rich repeat-containing G protein-coupled receptor 7 (LGR7)] belongs to the leucine-rich repeat containing G protein-coupled receptors subgroup C. Three new LGR7 splice variants have been cloned from the human fetal membranes and shown to be truncated versions of the full-length receptor, encoded by different lengths of the extracellular domain. The expression of their mRNAs has been confirmed by both qualitative and quantitative PCR and shown to be higher in the chorion and decidua before, compared with after, spontaneous labor. When HEK293 cells were transfected with each LGR7 splice variant, their proteins were retained within the endoplasmic reticulum. However, the protein for the shortest variant was also secreted into the medium. We have characterized the intracellular functions and effects of these LGR7 variants on the function of the wild-type (WT)-LGR7. In coexpression studies, each splice variant interacted directly with the WT-LGR7 and exerted a dominant-negative effect on cAMP accumulation by the WT-LGR7 after relaxin treatment. This interaction resulted in the sequestration of the WT-LGR7 inside the cells by down-regulation of its maturation and cell surface delivery. The constitutive homodimerization of WT-LGR7 has been shown here to take place in the endoplasmic reticulum, and the presence of any one of the splice variants decreased this by the formation of heterodimers with the WT-LGR7, supporting the view that homodimerization is a prerequisite for receptor trafficking to the cell surface. These data suggest that the dominant-negative effects of the LGR7 splice variants expressed in the chorion and decidua could be functionally significant in the peripartal period by inhibiting the function of WT-LGR7 and dampening the responsiveness of these tissues to endogenous relaxin

    Characterization of Relaxin Receptor (RXFP1) Desensitization and Internalization in Primary Human Decidual Cells and RXFP1-Transfected HEK293 Cells

    No full text
    We report here the desensitization and internalization of the relaxin receptor (RXFP1) after agonist activation in both primary human decidual cells and HEK293 cells stably transfected with RXFP1. The importance of β-arrestin 2 in these processes has also been demonstrated. Thus, in HEK-RXFP1 cells the desensitization of RXFP1 was significantly increased when β-arrestin 2 was overexpressed. After relaxin activation, β-arrestin 2 was translocated to the cell membrane and RXFP1 underwent rapid internalization. We have previously shown that RXFP1 forms dimers/oligomers during its biosynthesis and trafficking to the plasma membrane, we now show that internalization of RXFP1 occurs through this dimerization/oligomerization. In nonagonist stimulated cells, it is known that the majority of the RXFP1 is located intracellularly and was confirmed in the cells used here. Constitutive internalization of RXFP1 could account for this and indeed, slow but robust constitutive internalization, which was increased after agonist stimulation was demonstrated. A carboxyl-terminal deleted RXFP1 variant had a similar level of constitutive agonist-independent internalization as the wild-type RXFP1 but lost sensitivity to agonist stimulation. This demonstrated the importance of the carboxyl terminus in agonist-stimulated receptor internalization. These data suggest that the autocrine/paracrine actions of relaxin in the decidua are under additional controls at the level of expression of its receptor on the surface of its target cells
    corecore