4 research outputs found

    CD137 Enhancement of HPV Positive Head and Neck Squamous Cell Carcinoma Tumor Clearance

    No full text
    Standard-of-care cisplatin and radiation therapy (CRT) provides significant tumor control of human papillomavirus (HPV)-mediated head and neck squamous cell carcinomas (HNSCCs); this effectiveness depends on CRT-mediated activation of the patient’s own immune system. However, despite good survival, patients suffer significant morbidity necessitating on-going studies to define novel therapies that alleviate this burden. Given the role of the immune system in tumor clearance, immune modulation may further potentiate the CRT-activated response while potentially decreasing morbidity. CD137, an inducible cell surface receptor found on activated T cells, is involved in differentiation and survival signaling in T cells upon binding of its natural partner (CD137L). A number of studies have shown the effectiveness of targeting this immune-stimulatory pathway in regards to tumor clearance. Here, we test its role in HPV+ HNSCC tumor clearance using a previously characterized mouse model. We show that amplification of this stimulatory pathway synergizes with CRT for enhanced tumor clearance. Interestingly, tumor clearance is further potentiated by local tumor cell expression of CD137L

    Improved Clearance during Treatment of HPV-Positive Head and Neck Cancer through mTOR Inhibition

    Get PDF
    Human papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) incidence is increasing at a near epidemic rate. We investigated whether the mammalian (or mechanistic) target of rapamycin (mTOR) inhibitor, rapamycin, can be used as a concurrent agent to standard-of-care cisplatin/radiation therapy (CRT) to attenuate tumor lactate production, thus enhancing CRT-induced immune-mediated clearance of this antigenic tumor type. A C57Bl/ 6-derived mouse oropharyngeal epithelial cell line retrovirally transduced with HPV type 16 E6/E7 and human squamous cell carcinoma cell lines were evaluated for their response to rapamycin in vitro with proliferation assays, Western blots, and lactate assays. Clonogenic assays and a preclinical mouse model were used to assess rapamycin as a concurrent agent to CRT. The potential of rapamycin to enhance immune response through lactate attenuation was assessed using quantitative tumor lactate bioluminescence and assessment of cell-mediated immunity using E6/E7-vaccinated mouse splenocytes. Rapamycin alone inhibited mTOR signaling of all cancer cell lines tested in vitro and in vivo. Furthermore, rapamycin administered alone significantly prolonged survival in vivo but did not result in any long-term cures. Given concurrently, CRT/rapamycin significantly enhanced direct cell killing in clonogenic assays and prolonged survival in immunocompromised mice. However, in immunocompetent mice, concurrent CRT/rapamycin increased long-term cures by 21%. Preliminary findings suggest that improved survival involves increased cell killing and enhanced immune-mediated clearance in part due to decreased lactate production. The results may provide rationale for the clinical evaluation of mTOR inhibitors concurrent with standard-of-care CRT for treatment of HPV-positive HNSCC
    corecore