8 research outputs found

    Enrichment of PI3K-AKT-mTOR Pathway Activation in Hepatic Metastases from Breast Cancer

    No full text
    Little is known about the molecular signatures associated with specific metastatic sites in breast cancer. Using comprehensive multi-omic molecular profiling, we assessed whether alterations or activation of the PI3K-AKT-mTOR pathway is associated with specific sites of breast cancer metastasis. Next-generation sequencing-based whole-exome sequencing was coupled with reverse-phase protein microarray (RPPA) functional signaling network analysis to explore the PI3K-AKT-mTOR axis in 32 pretreated breast cancer metastases. RPPA-based signaling data were further validated in an independent cohort of 154 metastatic lesions from breast cancer and 101 unmatched primary breast tumors. The proportion of cases with PI3K-AKT-mTOR genomic alterations or signaling network activation were compared between hepatic and nonhepatic lesions. mutation and activation of AKT (S473) and p70S6K (T389) were detected more frequently among liver metastases than nonhepatic lesions ( < 0.01, = 0.056, and = 0.053, respectively). However, mutations alone were insufficient in predicting protein activation ( = 0.32 and = 0.19 for activated AKT and p70S6K, respectively). RPPA analysis of an independent cohort of 154 tumors confirmed the relationship between pathway activation and hepatic metastasis [AKT (S473), mTOR (S2448), and 4EBP1 (S65); < 0.01, = 0.02, and = 0.01, respectively]. Similar results were also seen between liver metastases and primary breast tumors [AKT (S473) < 0.01, mTOR (S2448) < 0.01, 4EBP1 (S65) = 0.01]. This signature was lost when primary tumors were compared with all metastatic sites combined. Breast cancer patients with liver metastasis may represent a molecularly homogenized cohort with increased incidence of mutations and activation of the PI3K-AKT-mTOR signaling network.

    PD-L1 quantification across tumor types using the reverse phase protein microarray: implications for precision medicine

    Get PDF
    BACKGROUND: Anti-programmed cell death protein 1 and programmed cell death ligand 1 (PD-L1) agents are broadly used in first-line and second-line treatment across different tumor types. While immunohistochemistry-based assays are routinely used to assess PD-L1 expression, their clinical utility remains controversial due to the partial predictive value and lack of standardized cut-offs across antibody clones. Using a high throughput immunoassay, the reverse phase protein microarray (RPPA), coupled with a fluorescence-based detection system, this study compared the performance of six anti-PD-L1 antibody clones on 666 tumor samples. METHODS: PD-L1 expression was measured using five antibody clones (22C3, 28-8, CAL10, E1L3N and SP142) and the therapeutic antibody atezolizumab on 222 lung, 71 ovarian, 52 prostate and 267 breast cancers, and 54 metastatic lesions. To capture clinically relevant variables, our cohort included frozen and formalin-fixed paraffin-embedded samples, surgical specimens and core needle biopsies. Pure tumor epithelia were isolated using laser capture microdissection from 602 samples. Correlation coefficients were calculated to assess concordance between antibody clones. For two independent cohorts of patients with lung cancer treated with nivolumab, RPPA-based PD-L1 measurements were examined along with response to treatment. RESULTS: Median-center PD-L1 dynamic ranged from 0.01 to 39.37 across antibody clones. Correlation coefficients between the six antibody clones were heterogeneous (range: -0.48 to 0.95) and below 0.50 in 61% of the comparisons. In nivolumab-treated patients, RPPA-based measurement identified a subgroup of tumors, where low PD-L1 expression equated to lack of response. CONCLUSIONS: Continuous RPPA-based measurements capture a broad dynamic range of PD-L1 expression in human specimens and heterogeneous concordance levels between antibody clones. This high throughput immunoassay can potentially identify subgroups of tumors in which low expression of PD-L1 equates to lack of response to treatment

    Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis

    No full text
    info:eu-repo/semantics/publishe
    corecore