153 research outputs found

    Dairy-CropSyst: Gaseous emissions and nutrient fate modeling tool

    Get PDF
    Dairy confined animal feeding operations (CAFO) are required to implement nutrient management plans for minimizing the risk of water resource degradation and report gaseous emissions when exceeding certain threshold values. Although tools exist to aid in completing such tasks, few integrate the impact of on-farm manure treatment unit operations such as anaerobic digestion, solids separation, and nutrient recovery. Furthermore, existing tools do not estimate the nutrient value of recovered products and effluent leaving the dairy system or the nutrient fate after effluent is applied to crop fields. Dairy-CropSyst is a decision support tool for researchers and CAFO managers aimed at evaluating the effects of different manure treatment unit operations on gaseous emission and nutrient fate in dairy systems. The model tracks nutrients through the dairy system, including inorganic and organic forms of carbon, nitrogen, and phosphorus. This is accomplished by integrating established transformation and emission equations, performance parameters of manure treatments from industrial data and literature, and using a cropping system model for the land application evaluation. Predicted and observed emission values for greenhouse gases (GHG) and ammonia from different dairy unit operations were found in good agreement. The use of Dairy-CropSyst has the potential to assist the dairy industry in decision making on manure management treatment strategies and as a tool for reporting GHG and ammonia emissions

    A phase 2, randomized, double-blind, placebo- controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a Gynecologic Oncology Group partners study.

    Get PDF
    A phase 2, randomized, placebo-controlled trial was conducted in women with recurrent epithelial ovarian carcinoma to evaluate the efficacy and safety of motolimod-a Toll-like receptor 8 (TLR8) agonist that stimulates robust innate immune responses-combined with pegylated liposomal doxorubicin (PLD), a chemotherapeutic that induces immunogenic cell death. Women with ovarian, fallopian tube, or primary peritoneal carcinoma were randomized 1 : 1 to receive PLD in combination with blinded motolimod or placebo. Randomization was stratified by platinum-free interval (≤6 versus >6-12 months) and Gynecologic Oncology Group (GOG) performance status (0 versus 1). Treatment cycles were repeated every 28 days until disease progression. The addition of motolimod to PLD did not significantly improve overall survival (OS; log rank one-sided P = 0.923, HR = 1.22) or progression-free survival (PFS; log rank one-sided P = 0.943, HR = 1.21). The combination was well tolerated, with no synergistic or unexpected serious toxicity. Most patients experienced adverse events of fatigue, anemia, nausea, decreased white blood cells, and constipation. In pre-specified subgroup analyses, motolimod-treated patients who experienced injection site reactions (ISR) had a lower risk of death compared with those who did not experience ISR. Additionally, pre-treatment in vitro responses of immune biomarkers to TLR8 stimulation predicted OS outcomes in patients receiving motolimod on study. Immune score (tumor infiltrating lymphocytes; TIL), TLR8 single-nucleotide polymorphisms, mutational status in BRCA and other DNA repair genes, and autoantibody biomarkers did not correlate with OS or PFS. The addition of motolimod to PLD did not improve clinical outcomes compared with placebo. However, subset analyses identified statistically significant differences in the OS of motolimod-treated patients on the basis of ISR and in vitro immune responses. Collectively, these data may provide important clues for identifying patients for treatment with immunomodulatory agents in novel combinations and/or delivery approaches. Clinicaltrials.gov, NCT 01666444

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    On the spin distributions of Λ\LambdaCDM haloes

    Full text link
    We used merger trees realizations, predicted by the extended Press-Schechter theory, in order to study the growth of angular momentum of dark matter haloes. Our results showed that: 1) The spin parameter λ\lambda' resulting from the above method, is an increasing function of the present day mass of the halo. The mean value of λ\lambda' varies from 0.0343 to 0.0484 for haloes with present day masses in the range of 109h1M 10^9\mathrm{h}^{-1}M_{\odot} to 1014h1M10^{14}\mathrm{h}^{-1}M_{\odot}. 2)The distribution of λ\lambda' is close to a log-normal, but, as it is already found in the results of N-body simulations, the match is not satisfactory at the tails of the distribution. A new analytical formula that approximates the results much more satisfactorily is presented. 3) The distribution of the values of λ\lambda' depends only weakly on the redshift. 4) The spin parameter of an halo depends on the number of recent major mergers. Specifically the spin parameter is an increasing function of this number.Comment: 10 pages, 8 figure

    Baryons: What, When and Where?

    Full text link
    We review the current state of empirical knowledge of the total budget of baryonic matter in the Universe as observed since the epoch of reionization. Our summary examines on three milestone redshifts since the reionization of H in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the observational techniques used to discover and characterize the phases of baryons. In the spirit of the meeting, the level is aimed at a diverse and non-expert audience and additional attention is given to describe how space missions expected to launch within the next decade will impact this scientific field.Comment: Proceedings Review for "Astrophysics in the Next Decade: JWST and Concurrent Facilities", ed. X. Tielens, 38 pages, 10 color figures. Revised to address comments from the communit
    corecore