2,000 research outputs found

    Mapping the Evolution of Optically-Generated Rotational Wavepackets in a Room Temperature Ensemble of D2_2

    Full text link
    A coherent superposition of rotational states in D2_2 has been excited by nonresonant ultrafast (12 femtosecond) intense (2 ×\times 1014^{14} Wcm−2^{-2}) 800 nm laser pulses leading to impulsive dynamic alignment. Field-free evolution of this rotational wavepacket has been mapped to high temporal resolution by a time-delayed pulse, initiating rapid double ionization, which is highly sensitive to the angle of orientation of the molecular axis with respect to the polarization direction, θ\theta. The detailed fractional revivals of the neutral D2_2 wavepacket as a function of θ\theta and evolution time have been observed and modelled theoretically.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. A. Full reference to follow.

    Place field repetition and spatial learning in a multicompartment environment

    Get PDF
    Recent studies have shown that place cells in the hippocampus possess firing fields that repeat in physically similar, parallel environments. These results imply that it should be difficult for animals to distinguish parallel environments at a behavioral level. To test this, we trained rats on a novel odor-location task in an environment with four parallel compartments which had previously been shown to yield place field repetition. A second group of animals was trained on the same task, but with the compartments arranged in different directions, an arrangement we hypothesised would yield less place field repetition. Learning of the odor-location task in the parallel compartments was significantly impaired relative to learning in the radially arranged compartments. Fewer animals acquired the full discrimination in the parallel compartments compared to those trained in the radial compartments, and the former also required many more sessions to reach criterion compared to the latter. To confirm that the arrangement of compartments yielded differences in place cell repetition, in a separate group of animals we recorded from CA1 place cells in both environments. We found that CA1 place cells exhibited repeated fields across four parallel local compartments, but did not do so when the same compartments were arranged radially. To confirm that the differences in place field repetition across the parallel and radial compartments depended on their angular arrangement, and not incidental differences in access to an extra-maze visual landmark, we repeated the recordings in a second set of rats in the absence of the orientation landmark. We found, once again, that place fields showed repetition in parallel compartments, and did not do so in radially arranged compartments. Thus place field repetition, or lack thereof, in these compartments was not dependent on extra-maze cues. Together, these results imply that place field repetition constrains spatial learning. © 2015 Wiley Periodicals, Inc

    Optically guided mode study of nematic liquid crystal alignment on a zero-order grating

    Get PDF
    B. T. Hallam and J. Roy Sambles, Physical Review E, Vol. 61, pp. 6699-6704 (2000). "Copyright © 2000 by the American Physical Society."The characterization of a liquid crystal cell, which comprises one zero-order (that is, at the wavelength of study it is nondiffractive) diffraction grating and one rubbed polyimide-coated substrate, has been performed using an optically guided mode technique. The cell is filled with nematic liquid crystal E7 (manufactured and sold by Merck, Poole, U.K.). The excitation of fully leaky guided modes within the liquid crystal layer has allowed the optical director profile to be quantified under the application of weak in-plane electric fields. The fitting of angle-dependent optical data to multilayer optical theory yields the accurate twist profile of the liquid crystal for different field strengths. Comparisons with profiles predicted from elastic continuum theory, assuming a Rapini-Papoular-type anchoring at the surfaces, allow both the azimuthal anchoring strength at each surface and the twist elastic constant of the bulk to be accurately determined. Repeating these measurements as a function of temperature allows the surface and bulk order parameters of the grating-aligned liquid crystal to be deduced

    Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization

    Full text link
    Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms. This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly-polarized radiation. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage `shake-up' reaction. Here we report a unique combination of experimental techniques that enables us to accurately measure the tunnel ionization probability for argon exposed to 50 femtosecond laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry, equivalent to a homogenous electric field. Furthermore, circularly-polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond XUV radiation sources. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic

    Modelling the population effectiveness of the national seasonal influenza vaccination programme in Scotland : the impact of targeting all individuals aged 65 years and over Flu Vaccination Programme Effectiveness

    Get PDF
    Background: For the last 17 years, the UK has employed a routine influenza vaccination programme with the aim of reducing the spread of seasonal influenza. In mid-2000, the programme moved from a purely risk-based approach to a risk and age group targeted approach with all those aged 65+ years being included. To date, there has been no assessment of the population effectiveness of this age targeted policy in Scotland. Objectives: Statistical modelling techniques were used to determine what impact the routine vaccination of those aged 65+ years has had on influenza related morbidity and mortality in Scotland. Methods: Two Poisson regression models were developed using weekly counts of all-cause mortality, cause specific mortality and emergency hospitalisations for the period 1981 – 2012, one using week-in-year and the other using temperature to capture the seasonal variability in mortality/hospitalisations. These models were used to determine the number of excess deaths/hospitalisations associated with the introduction of the local risk and age-based vaccination programme in 2000. Results: Routinely vaccinating those aged 65+ years is associated with a reduction in excess allcause mortality, cardiovascular and COPD related mortality and COPD related hospitalisations. Our analysis suggests that using the week-in-year model, on average, 732 (95%CI 66 – 1,398) deaths from all-causes, 248 (95%CI 10 – 486) cardiovascular related deaths, 123 (95%CI 28 – 218) COPD related deaths, and 425 (95%CI 258 – 592) COPD related hospitalisations have been prevented each flu season among the those aged 65+. Similar results were found using the temperature model. There was no evidence to suggest that the change in policy was associated with reductions in influenza/pneumonia related mortality or influenza/cardiovascular related hospitalisations. Conclusions: Routinely vaccinating those aged 65+ years appears to have reduced influenza related morbidity and mortality in Scotland. With the childhood vaccination programme well underway, these data provide an importance benchmark which can be used to accurately assess the impact of this new seasonal influenza vaccination programme

    Mural Cell Associated VEGF Is Required for Organotypic Vessel Formation

    Get PDF
    Background: Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics. Methods and Findings: To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF. Conclusions: These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation
    • …
    corecore