2,517 research outputs found

    ARED 3.0: the large and diverse AU-rich transcriptome

    Get PDF
    A comprehensive search that utilized a large set of mRNA data from human genome databases and additionally, expressed sequence tag (EST) database characterized this latest update of AU-rich elements (AREs) containing mRNA database (ARED). A large number of ARE-mRNA, as much as 4000, were recovered and include many of ARE alternative forms. This number represents as much as 5–8% of the human genes depending on the entire number of genes. The new ARED does not contain only larger and diverse number of ARE-mRNAs but additional functionality and enhanced search capabilities are given in the database website . These include class and cluster of AREs, source mRNAs, EST evidence, buildup information, retrieval of lists of genes, and integration with current and new NCBI data, such as Entrez ID and Unigene. Gene Ontology analysis shows there are significant differences in functional diversity of ARED when compared with the overall genome. Many of ARE-genes mediate regulatory processes, reactions to outside stimuli, RNA metabolism, and developmental processes particularly those of early and transient responses. The wide interest in mRNA turnover and importance of AREs in health and disease signify the compilation of ARE-genes

    Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas

    Get PDF
    Pediatric high-grade gliomas (pHGG) are a rare yet devastating malignancy of the central nervous system’s glial support cells, affecting children, adolescents, and young adults. Tumors of the central nervous system account for the leading cause of pediatric mortality of which high-grade gliomas present a significantly grim prognosis. While the past few decades have seen many pediatric cancers experiencing significant improvements in overall survival, the prospect of survival for patients diagnosed with pHGGs has conversely remained unchanged. This can be attributed in part to tumor heterogeneity and the existence of the blood-brain barrier. Advances in discovery research have substantiated the existence of unique subgroups of pHGGs displaying alternate responses to different therapeutics and varying degrees of overall survival. This highlights a necessity to approach discovery research and clinical management of the disease in an alternative subtype-dependent manner. This review covers traditional approaches to the therapeutic management of pHGGs, limitations of such methods and emerging alternatives. Novel mutations which predominate the pHGG landscape are highlighted and the therapeutic potential of targeting them in a subtype specific manner discussed. Collectively, this provides an insight into issues in need of transformative progress which arise during the management of pHGGs

    Primary care consultations and costs among HIV-positive individulas in UK primary care 1995-2005: a cohort study

    Get PDF
    Objectives: To investigate the role of primary care in the management of HIV and estimate primary care-associated costs at a time of rising prevalence. Methods: Retrospective cohort study between 1995 and 2005, using data from general practices contributing data to the UK General Practice Research Database. Patterns of consultation and morbidity and associated consultation costs were analysed among all practice-registered patients for whom HIV-positive status was recorded in the general practice record. Results: 348 practices yielded 5504 person-years (py) of follow-up for known HIV-positive patients, who consult in general practice frequently (4.2 consultations/py by men, 5.2 consultations/py by women, in 2005) for a range of conditions. Consultation rates declined in the late 1990s from 5.0 and 7.3 consultations/py in 1995 in men and women, respectively, converging to rates similar to the wider population. Costs of consultation (general practitioner and nurse, combined) reflect these changes, at £100.27 for male patients and £117.08 for female patients in 2005. Approximately one in six medications prescribed in primary care for HIV-positive individuals has the potential for major interaction with antiretroviral medications. Conclusion: HIV-positive individuals known in general practice now consult on a similar scale to the wider population. Further research should be undertaken to explore how primary care can best contribute to improving the health outcomes of this group with chronic illness. Their substantial use of primary care suggests there may be potential to develop effective integrated care pathways

    Role of PKR and Type I IFNs in Viral Control during Primary and Secondary Infection

    Get PDF
    Type I interferons (IFNs) are known to mediate viral control, and also promote survival and expansion of virus-specific CD8+ T cells. However, it is unclear whether signaling cascades involved in eliciting these diverse cellular effects are also distinct. One of the best-characterized anti-viral signaling mechanisms of Type I IFNs is mediated by the IFN-inducible dsRNA activated protein kinase, PKR. Here, we have investigated the role of PKR and Type I IFNs in regulating viral clearance and CD8+ T cell response during primary and secondary viral infections. Our studies demonstrate differential requirement for PKR, in viral control versus elicitation of CD8+ T cell responses during primary infection of mice with lymphocytic choriomeningitis virus (LCMV). PKR-deficient mice mounted potent CD8+ T cell responses, but failed to effectively control LCMV. The compromised LCMV control in the absence of PKR was multifactorial, and linked to less effective CD8+ T cell-mediated viral suppression, enhanced viral replication in cells, and lower steady state expression levels of IFN-responsive genes. Moreover, we show that despite normal expansion of memory CD8+ T cells and differentiation into effectors during a secondary response, effective clearance of LCMV but not vaccinia virus required PKR activity in infected cells. In the absence of Type I IFN signaling, secondary effector CD8+ T cells were ineffective in controlling both LCMV and vaccinia virus replication in vivo. These findings provide insight into cellular pathways of Type I IFN actions, and highlight the under-appreciated importance of innate immune mechanisms of viral control during secondary infections, despite the accelerated responses of memory CD8+ T cells. Additionally, the results presented here have furthered our understanding of the immune correlates of anti-viral protective immunity, which have implications in the rational design of vaccines

    miRNA profiles as a predictor of chemoresponsiveness in Wilms' tumor blastema.

    Get PDF
    The current SIOP treatment protocol for Wilms' tumor involves pre-operative chemotherapy followed by nephrectomy. Not all patients benefit equally from such chemotherapy. The aim of this study was to generate a miRNA profile of chemo resistant blastemal cells in high risk Wilms' tumors which might serve as predictive markers of therapeutic response at the pre-treatment biopsy stage. We have shown here that unsupervised hierarchical clustering of genome-wide miRNA expression profiles can clearly separate intermediate risk tumors from high risk tumors. A total of 29 miRNAs were significantly differentially expressed between post-treatment intermediate risk and high risk groups, including miRNAs that have been previously linked to chemo resistance in other cancer types. Furthermore, 7 of these 29 miRNAs were already at the pre-treatment biopsy stage differentially expressed between cases ultimately deemed intermediate risk compared to high risk. These miRNA alterations include down-regulation in high risk cases of miR-193a.5p, miR-27a and the up-regulation of miR-483.5p, miR-628.5p, miR-590.5p, miR-302a and miR-367. The demonstration of such miRNA markers at the pre-treatment biopsy stage could permit stratification of patients to more tailored treatment regimens

    Cre-dependent DNA recombination activates a STING-dependent innate immune response

    Get PDF
    Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell-cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies

    Cre-dependent DNA recombination activates a STING-dependent innate immune response

    Get PDF
    Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell-cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies

    Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors

    Get PDF
    Anti-microRNA (miRNA) oligonucleotides (AMOs) with 2\u27-O-Methyl (2\u27OMe) residues are commonly used to study miRNA function and can achieve high potency, with low cytotoxicity. Not withstanding this, we demonstrate the sequence-dependent capacity of 2\u27OMe AMOs to inhibit Toll-like receptor (TLR) 7 and 8 sensing of immunostimulatory RNA, independent of their miRNA-targeting function. Through a screen of 29 AMOs targeting common miRNAs, we found a subset of sequences highly inhibitory to TLR7 sensing in mouse macrophages. Interspecies conservation of this inhibitory activity was confirmed on TLR7/8 activity in human peripheral blood mononuclear cells. Significantly, we identified a core motif governing the inhibitory activity of these AMOs, which is present in more than 50 AMOs targeted to human miRNAs in miRBaseV20. DNA/locked nucleic acids (LNA) AMOs synthesized with a phosphorothioate backbone also inhibited TLR7 sensing in a sequence-dependent manner, demonstrating that the off-target effects of AMOs are not restricted to 2\u27OMe modification. Taken together, our work establishes the potential for off-target effects of AMOs on TLR7/8 function, which should be taken into account in their therapeutic development and in vivo application

    Gravitational Waves from the Dynamical Bar Instability in a Rapidly Rotating Star

    Get PDF
    A rapidly rotating, axisymmetric star can be dynamically unstable to an m=2 "bar" mode that transforms the star from a disk shape to an elongated bar. The fate of such a bar-shaped star is uncertain. Some previous numerical studies indicate that the bar is short lived, lasting for only a few bar-rotation periods, while other studies suggest that the bar is relatively long lived. This paper contains the results of a numerical simulation of a rapidly rotating gamma=5/3 fluid star. The simulation shows that the bar shape is long lived: once the bar is established, the star retains this shape for more than 10 bar-rotation periods, through the end of the simulation. The results are consistent with the conjecture that a star will retain its bar shape indefinitely on a dynamical time scale, as long as its rotation rate exceeds the threshold for secular bar instability. The results are described in terms of a low density neutron star, but can be scaled to represent, for example, a burned-out stellar core that is prevented from complete collapse by centrifugal forces. Estimates for the gravitational-wave signal indicate that a dynamically unstable neutron star in our galaxy can be detected easily by the first generation of ground based gravitational-wave detectors. The signal for an unstable neutron star in the Virgo cluster might be seen by the planned advanced detectors. The Newtonian/quadrupole approximation is used throughout this work.Comment: Expanded version to be published in Phys. Rev. D: 13 pages, REVTeX, 13 figures, 9 TeX input file
    • …
    corecore