7 research outputs found

    Computer-aided screening of aspiration risks in dysphagia with wearable technology: a Systematic Review and meta-analysis on test accuracy

    Get PDF
    Aspiration caused by dysphagia is a prevalent problem that causes serious health consequences and even death. Traditional diagnostic instruments could induce pain, discomfort, nausea, and radiation exposure. The emergence of wearable technology with computer-aided screening might facilitate continuous or frequent assessments to prompt early and effective management. The objectives of this review are to summarize these systems to identify aspiration risks in dysphagic individuals and inquire about their accuracy. Two authors independently searched electronic databases, including CINAHL, Embase, IEEE Xplore® Digital Library, PubMed, Scopus, and Web of Science (PROSPERO reference number: CRD42023408960). The risk of bias and applicability were assessed using QUADAS-2. Nine (n = 9) articles applied accelerometers and/or acoustic devices to identify aspiration risks in patients with neurodegenerative problems (e.g., dementia, Alzheimer’s disease), neurogenic problems (e.g., stroke, brain injury), in addition to some children with congenital abnormalities, using videofluoroscopic swallowing study (VFSS) or fiberoptic endoscopic evaluation of swallowing (FEES) as the reference standard. All studies employed a traditional machine learning approach with a feature extraction process. Support vector machine (SVM) was the most famous machine learning model used. A meta-analysis was conducted to evaluate the classification accuracy and identify risky swallows. Nevertheless, we decided not to conclude the meta-analysis findings (pooled diagnostic odds ratio: 21.5, 95% CI, 2.7–173.6) because studies had unique methodological characteristics and major differences in the set of parameters/thresholds, in addition to the substantial heterogeneity and variations, with sensitivity levels ranging from 21.7% to 90.0% between studies. Small sample sizes could be a critical problem in existing studies (median = 34.5, range 18–449), especially for machine learning models. Only two out of the nine studies had an optimized model with sensitivity over 90%. There is a need to enlarge the sample size for better generalizability and optimize signal processing, segmentation, feature extraction, classifiers, and their combinations to improve the assessment performance.Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/), identifier (CRD42023408960)

    Virtual Reality-Based Immersive Rehabilitation for Cognitive- and Behavioral-Impairment-Related Eating Disorders: A VREHAB Framework Scoping Review

    No full text
    Virtual reality (VR) technology is one of the promising directions for rehabilitation, especially cognitive rehabilitation. Previous studies demonstrated successful rehabilitation in motor, cognitive, and sensorial functions using VR. The objective of this review is to summarize the current designs and evidence on immersive rehabilitation interventions using VR on cognitive- or behavioral-related eating disorders, which was mapped using a VREHAB framework. Two authors independently searched electronic databases, including PubMed, Web of Science, Scopus, CINAHL, EMBASE, and Cochrane Library. Ten (n = 10) articles were eligible for review. Treatments for anorexia nervosa and binge eating disorder/bulimia nervosa were reported through enhanced/experimental cognitive behavior therapy (ECT), cue exposure therapy (CET), and body exposure therapy (BET) via the virtual environment. Some studies reported that the VR effects were superior or comparable to traditional treatments, while the effects may last longer using VR technology. In addition, VR was perceived as acceptable and feasible among patients and therapists and could be valuable for supplementing existing therapies, relieving manpower and caregiver burdens. Future studies may consider incorporating haptic, smell, and biofeedback to improve the experience, and thus the effects of the treatments for the users

    A Comprehensive Assessment Protocol for Swallowing (CAPS): Paving the Way towards Computer-Aided Dysphagia Screening

    No full text
    Dysphagia is one of the most common problems among older adults, which might lead to aspiration pneumonia and eventual death. It calls for a feasible, reliable, and standardized screening or assessment method to prompt rehabilitation measures and mitigate the risks of dysphagia complications. Computer-aided screening using wearable technology could be the solution to the problem but is not clinically applicable because of the heterogeneity of assessment protocols. The aim of this paper is to formulate and unify a swallowing assessment protocol, named the Comprehensive Assessment Protocol for Swallowing (CAPS), by integrating existing protocols and standards. The protocol consists of two phases: the pre-test phase and the assessment phase. The pre-testing phase involves applying different texture or thickness levels of food/liquid and determining the required bolus volume for the subsequent assessment. The assessment phase involves dry (saliva) swallowing, wet swallowing of different food/liquid consistencies, and non-swallowing (e.g., yawning, coughing, speaking, etc.). The protocol is designed to train the swallowing/non-swallowing event classification that facilitates future long-term continuous monitoring and paves the way towards continuous dysphagia screening

    A Comprehensive Assessment Protocol for Swallowing (CAPS): Paving the Way towards Computer-Aided Dysphagia Screening

    No full text
    Dysphagia is one of the most common problems among older adults, which might lead to aspiration pneumonia and eventual death. It calls for a feasible, reliable, and standardized screening or assessment method to prompt rehabilitation measures and mitigate the risks of dysphagia complications. Computer-aided screening using wearable technology could be the solution to the problem but is not clinically applicable because of the heterogeneity of assessment protocols. The aim of this paper is to formulate and unify a swallowing assessment protocol, named the Comprehensive Assessment Protocol for Swallowing (CAPS), by integrating existing protocols and standards. The protocol consists of two phases: the pre-test phase and the assessment phase. The pre-testing phase involves applying different texture or thickness levels of food/liquid and determining the required bolus volume for the subsequent assessment. The assessment phase involves dry (saliva) swallowing, wet swallowing of different food/liquid consistencies, and non-swallowing (e.g., yawning, coughing, speaking, etc.). The protocol is designed to train the swallowing/non-swallowing event classification that facilitates future long-term continuous monitoring and paves the way towards continuous dysphagia screening

    Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model

    No full text
    Emerging sleep health technologies will have an impact on monitoring patients with sleep disorders. This study proposes a new deep learning model architecture that improves the under-blanket sleep posture classification accuracy by leveraging the anatomical landmark feature through an attention strategy. The system used an integrated visible light and depth camera. Deep learning models (ResNet-34, EfficientNet B4, and ECA-Net50) were trained using depth images. We compared the models with and without an anatomical landmark coordinate input generated with an open-source pose estimation model using visible image data. We recruited 120 participants to perform seven major sleep postures, namely, the supine posture, prone postures with the head turned left and right, left- and right-sided log postures, and left- and right-sided fetal postures under four blanket conditions, including no blanket, thin, medium, and thick. A data augmentation technique was applied to the blanket conditions. The data were sliced at an 8:2 training-to-testing ratio. The results showed that ECA-Net50 produced the best classification results. Incorporating the anatomical landmark features increased the F1 score of ECA-Net50 from 87.4% to 92.2%. Our findings also suggested that the classification performances of deep learning models guided with features of anatomical landmarks were less affected by the interference of blanket conditions

    Table_1_Wrist accelerometry for monitoring dementia agitation behaviour in clinical settings: A scoping review.DOCX

    No full text
    Agitated behaviour among elderly people with dementia is a challenge in clinical management. Wrist accelerometry could be a versatile tool for making objective, quantitative, and long-term assessments. The objective of this review was to summarise the clinical application of wrist accelerometry to agitation assessments and ways of analysing the data. Two authors independently searched the electronic databases CINAHL, PubMed, PsycInfo, EMBASE, and Web of Science. Nine (n = 9) articles were eligible for a review. Our review found a significant association between the activity levels (frequency and entropy) measured by accelerometers and the benchmark instrument of agitated behaviour. However, the performance of wrist accelerometry in identifying the occurrence of agitation episodes was unsatisfactory. Elderly people with dementia have also been monitored in existing studies by investigating the at-risk time for their agitation episodes (daytime and evening). Consideration may be given in future studies on wrist accelerometry to unifying the parameters of interest and the cut-off and measurement periods, and to using a sampling window to standardise the protocol for assessing agitated behaviour through wrist accelerometry.</p
    corecore