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Aspiration caused by dysphagia is a prevalent problem that causes serious health
consequences and even death. Traditional diagnostic instruments could induce pain,
discomfort, nausea, and radiation exposure. The emergence of wearable technology
with computer-aided screeningmight facilitate continuous or frequent assessments to
prompt early and effective management. The objectives of this review are to
summarize these systems to identify aspiration risks in dysphagic individuals and
inquire about their accuracy. Two authors independently searched electronic
databases, including CINAHL, Embase, IEEE Xplore

®
Digital Library, PubMed,

Scopus, and Web of Science (PROSPERO reference number: CRD42023408960).
The risk of bias and applicability were assessed using QUADAS-2. Nine (n = 9) articles
applied accelerometers and/or acoustic devices to identify aspiration risks in patients
with neurodegenerative problems (e.g., dementia, Alzheimer’s disease), neurogenic
problems (e.g., stroke, brain injury), in addition to some children with congenital
abnormalities, using videofluoroscopic swallowing study (VFSS) or fiberoptic
endoscopic evaluation of swallowing (FEES) as the reference standard. All studies
employed a traditional machine learning approach with a feature extraction process.
Support vector machine (SVM) was the most famous machine learning model used. A
meta-analysis was conducted to evaluate the classification accuracy and identify risky
swallows. Nevertheless, we decided not to conclude the meta-analysis findings
(pooled diagnostic odds ratio: 21.5, 95% CI, 2.7–173.6) because studies had unique
methodological characteristics and major differences in the set of parameters/
thresholds, in addition to the substantial heterogeneity and variations, with
sensitivity levels ranging from 21.7% to 90.0% between studies. Small sample sizes
could be a critical problem in existing studies (median=34.5, range 18–449), especially
formachine learningmodels.Only twoout of the nine studies had anoptimizedmodel
with sensitivity over 90%. There is a need to enlarge the sample size for better
generalizability and optimize signal processing, segmentation, feature extraction,
classifiers, and their combinations to improve the assessment performance.

Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/),
identifier (CRD42023408960).
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1 Introduction

Aspiration occurs when oropharyngeal contents, such as food,
liquid, saliva, or secretion, are accidentally misdirected into the
larynx, lower respiratory tract, or lung (Ebihara et al., 2016), which
may result in aspiration pneumonia if infection or inflammation
develops. Aspiration could be life-threatening when the airway is
blocked (i.e., asphyxiation), and aspiration pneumonia was ranked
as the third leading cause of injury deaths in older people
(Kramarow et al., 2014). A study on 784 patients reported that
65.2% demonstrated pharyngeal residue-related dysphagia (Seo
et al., 2021). Aspiration pneumonia resulted in more than
58,000 annual deaths in the United States, with an age-adjusted
mortality rate of 21.85 per 100,000 people (Gupte et al., 2022).
Another study found that the median hospitalization charge for
aspiration pneumonia was US$30,526 (Wu et al., 2017). Patients
who suffered from aspiration reported fear, depression, and
frustration that they might aspirate again, which affected their
mental health and quality of life (Martino et al., 2009).

Dysphagia or deglutition disorder (i.e., difficulty swallowing) is
the main cause of aspiration (Morley, 2015). Individuals who
suffered from dysphagia were about nine times more likely to
develop aspiration pneumonia (van der Maarel-Wierink et al.,
2011). Likewise, dysphagia was present in 92% of pneumonia
patients (Almirall et al., 2013). While the prevailing dysphagic
aspiration has imposed a heavy burden on the healthcare and
hospitalization systems (Allen et al., 2020; Lesa et al., 2021), early
diagnosis and screening of dysphagia and aspiration risks are
essential to facilitate effective management and reduce
subsequent risks of pulmonary complications (Hines et al., 2016;
Wirth et al., 2016). Nevertheless, aspiration resulting from
dysphagia is often referred to as “silent aspiration”. Some
patients may remain clinically asymptomatic, without presenting
coughing or choking signs, and self-report swallowing difficulties
(Wakasugi et al., 2008; Miller et al., 2009; Suiter et al., 2020).
Confirmation of apparent aspiration cannot be obtained clinically
(Teramoto, 2022). Bedside assessment frequently misses dysphagia
patients with silent aspiration (Wakasugi et al., 2008). Meanwhile,
the gold standards for assessing dysphagic aspiration are the
videofluoroscopic swallowing study (VFSS) and the fiber-optic
endoscopic evaluation of swallowing (FEES). Nevertheless, both
fluoroscopy and endoscopy induce pain, discomfort, nausea, and
radiation exposure, especially in children (Ingleby et al., 2021),
which are not feasible to facilitate continuous or frequent
assessments. There standards also require high costs and
professionals to operate (Lancaster, 2015).

As dysphagia or neurodegenerative problems deteriorate
gradually and aspiration could occur unexpectedly (Lim et al.,
2023), it is necessary to develop accessible and reliable
instrumental screening tools that enable continuous or frequent
assessments of aspiration risks. Wearable technology with
computer-aided diagnosis/screening might be a potential
alternative to bedside questionnaires and instrumental diagnostic
instruments (such as VFSS and FEES) (So et al., 2023).

Accelerometers are among the most common sensors used in
wearable technology, and have been used to evaluate levels of
physical (Karas et al., 2022), ambulatory (Steins et al., 2014), and
behavioral information (Cheung et al., 2022). In the case of
swallowing, accelerometers can trace the biomotion of the
laryngeal region that manifests swallowing abnormalities and
thus aspiration risks (So et al., 2023). In the same vein, soft
sensors with flexible electronics or artificial skin could serve the
same purpose (Chen J. et al., 2021; Chen et al., 2021b; Gao et al.,
2021). On the other hand, aspirated patients may demonstrate a wet
voice (Warms and Richards, 2000) and attenuated breathing and
swallowing sounds (Shaw et al., 2004; Kang et al., 2017), in which
acoustic features could be recognized by microphones.

Computer-aided screening, using machine learning and deep
learning, can enhance the assessment of swallowing functions and,
hence, dysphagia or aspiration in older adults. Park et al. (2023)
attempted to predict aspiration by applying machine learning
models to a bedside screening questionnaire (GUSS test). They
attained an area under the receiver operating characteristics
curve (AUC) of 0.81. Through the examination of
videofluoroscopic hyoid motions, Lee et al. (2016) detected
swallowing impairment with strong discriminative power
(AUC = 0.93) using the support vector machine (SVM). In
addition, Roldan-Vasco et al. (2021) categorized swallowing
dysfunctions by speech variations using the random forest and
obtained a 91.0% sensitivity. Nevertheless, current wearable
technology was deemed insufficiently reliable to recognize
swallowing and non-swallowing, which hindered real-world
applications (So et al., 2023).

To this end, our review question is: how were wearable
technologies with computer-aided screening techniques were
utilized to identify aspiration risks in dysphagia, and how
accurate were these techniques or systems, in general? The
objective of this review is to summarize the evidence on the
testing techniques, protocols, and accuracy performances for the
assessment of aspiration risks. The Preferred Reporting Items for
Systematic Review and Meta-Analyses (PRISMA-DTA) extension
for diagnostic test accuracy was adopted to frame the reporting of
this review. The review was registered in PROSPERO (reference
number: CRD42023408960).

2 Materials and methods

2.1 Eligibility criteria

The search strategy was designed with reference to the PIRO tool
(i.e., population, index test, reference test, and outcomes), and the
study design of the eligible articles shall focus on the assessment of
test accuracy (i.e., non-experimental cross-sectional study) with
prediction models (e.g., statistical modeling, machine learning,
and deep learning). For the population, we targeted individuals
with dysphagia and its association with aspirations or the risks of
aspirations. For the index test, our search terms were categorized
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into those related to screening instruments and classifiers. We did
not consider search terms for reference tests because it would
misdirect the search results from screening tools to diagnostic
tools. Lastly, outcome variables shall be related to test or
classification performance (either per-individual or per-sample).

2.2 Information sources

Two independent authors (DK-HL and ES-WC) searched the
literature in March 2023 from electronic databases, including
CINAHL (Cumulated Index to Nursing and Allied Health
Literature) via EBSCOhost (default field), Embase (title, abstract,
keywords) via OVID, IEEE Xplore® Digital Library (metadata),
PubMed (title/abstract), Scopus (title, abstract keywords), and
Clarivate Web of Science (topic). There was no constraint on the
year of publication, but it was limited to those in English.

2.3 Search strategy

The search terms were determined by snowballing literature
from simple pilot searches using keywords or free-text words from
the identified concept (i.e., the PIRO tool) (Aromataris and Riitano,
2014). The categories of search terms for dysphagia were
“dysphagia”, “swallowing disorder”, “swallowing disorders”,
“deglutition disorder”, and “deglutition disorders”. Aspiration-
related terms were “aspiration”, “aspirated”, “choke”, “choking”,
“inhale”, and “inhaled”. The search terms for instruments were
“accelero*”, “acoustic”, “vibration”, “vibrate”, “vibratory”,
“vibrated”, “sound” “stress”, “strain”, “stretch”, “stretchable”,
“stretching”, “bend”, “track”, “tracking”, “sonic”, “pressure”,
“resist*”, “piezo*”, “capacity*”, “film”, “nano*”, “carbon*”,
“graphene”, “biomaterial”, “biosensor, “biosensors”, “sensor”,
“sensors”, “artificial skin”, “soft electronics”, “flexible electronics”,
“ultrasound”, “MMG”, “mechanomyography”, “microphone”. The
search terms for classifiers were “machine learning”, “deep
learning”, “regression”, “Bayesian”, supervised learning”,
“unsupervised learning”, “reinforcement learning”, “reinforced
learning”, “artificial intelligence”, “classify”, “classified”,
“classification”, “cluster”, “clustering”, “SVM”, “support vector
machine”, “random forest”, “decision tree”, “decision trees”,
“neural network”, “neural networks”, “gradient boosting”,
“XGBoost”, “AdaBoost”, “perceptron”, “transformer”, “CNN”,
“RNN”, “ANN”, “KNN”, and “MLP”. The search terms were
combined by an OR operation within the category and an AND
operation between the categories.

2.4 Selection process

Inclusion criteria for the search and screen included: 1) original
research articles; 2) published in English; 3) published as journal
articles (in-press inclusive), preprints, or conference full papers; 4)
involved individuals with dysphagia, regardless of the cause of
dysphagia; 5) involved instrumental screening, e.g.,
accelerometers, microphones, and strain sensors; 6) binary
classification of aspirated and non-aspirated individuals; or

swallows with high and low risks of aspiration, airway invasion,
or airway entry; 7) classifiers using statistical modeling, machine
learning, or deep learning; 8) reported accuracy-related test
performance measures of model predictions, such as sensitivity
and specificity.

Exclusion criteria included 1) published as reviews, perspective
articles, commentary, conference abstracts, book sections/chapters,
or patents; 2) classification of dysphagia and non-dysphagia without
accounting for aspiration; 3) index tests targeted on diagnostic
equipment or invasive instruments, such as videofluoroscopic
swallowing study (VFSS), fiberoptic endoscopic evaluation of
swallowing (FEES), and manometry; 4) non-instrumental
classification, such as observation and palpation, bedside
questionnaires, and data analytics based on patients’ history and
clinical records.

2.5 Data collection and extraction

In the screening stage, the first author (DK-HL) screened the
search results by their titles, abstracts, and keywords. Thereafter, the
same author assessed the eligibility of the screened results by reading
articles in full text. The screened and excluded records were checked
by the third author (H-YL). Any disagreement was resolved by
seeking consensus with the corresponding authors. The data related
to PIRO were summarized and tabulated into participant
information, index test (instrument configuration and testing
protocol, feature extraction, modeling), reference test, and
outcome metrics and testing performance. In cases of multiple
populations and tests, they would all be presented in the data
synthesis tables.

2.6 Methodological quality assessment

The Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) was used to assess the applicability and risk of bias
of the reviewed articles (Whiting et al., 2011). The tool consisted of
seven items and was structured into four domains, including patient
selection, index test, reference standard, and flow and timing.
Table 1 summarizes the domain and signaling questions for
assessing the quality. The graphical presentation of QUADAS-2
results was generated using Review Manager (RevMan) version 5.4
(The Cochrane Collaboration, 2020).

2.7 Meta-analysis

We considered sensitivity and specificity as the principle
diagnostic accuracy measures, though we also listed out the PPV
(positive predictive value), NPV (negative predictive value), AUC,
and other outcomes in the table. Sensitivity and PPV were also
known as recall and precision, respectively. The number of true
positives, true negatives, false positives, and false negatives (i.e., 2 ×
2 contingency table, or the confusion matrix) were estimated by the
available information of sensitivity, specificity, and the
approximated size of the testing dataset from the cross-validation
ratio from the papers. We only considered one outcome for each
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study in the meta-analysis by selecting the best-performing or
featuring result.

Descriptive statistics were visualized using the coupled forest
plot of sensitivity and specificity, as well as the forest plot of log
diagnostic odds ratio, generated by Review Manager (RevMan)
version 5.4 (The Cochrane Collaboration, 2020). The pooled
diagnostic odds ratio was estimated by meta-analysis using a
univariate technique on the per-sample level data. A random
effect model was adopted based on the DerSimonian and Laird
approach (DerSimonian and Laird, 1986). A bivariate approach that
produced pooled sensitivity and specificity was not considered
because of the small number of available studies (Gatsonis and
Paliwal, 2006) and the fact that the thresholds between studies were
different because of the variations in instruments.

The diagnostic odds ratios were displayed using the forest plot,
while the confidence intervals of diagnostic accuracy parameters of
the Lehmann model (or proportional hazard model) were visualized
using the summary receiver operating characteristics curve (SROC)
(Holling et al., 2012). A diagnostic odds ratio of 10.00 was
considered a good test (Deeks, 2001). Heterogeneity was
identified based on qualitative observation of the summary points
and plots since I2 statistics were inappropriate for meta-analysis of
test accuracy (McGrath et al., 2017). Sensitivity analysis and the
evaluation of small-study effects were not conducted because of the
small number of included studies (Lau et al., 2006). Meta-analysis
was performed using R statistical package (Foundation for Statistical
Computing, Vienna, Austria) with the “mada” package.

3 Study selection

The PRISMA flowchart shown in Figure 1 illustrates the search
and screening process for the review. The initial search identified
178 articles from the six databases, and 96 duplicate articles were
removed. Screening on the title and abstracts excluded 37 records,

for the following reasons: violation of inclusion criteria of article
types, such as reviews and conference abstracts, n = 2; duplicate
publications (articles published as full conference papers were
published again in journals with the same content. In such cases,
only publications in journals were retained since they contained full,
detailed information), n = 2; irrelevant to dysphagia and aspiration,
n = 14; not related to the classification of aspiration, n = 7; invasive
instrument, such as manometry, n = 9; non-instrumental, such as
questionnaires, n = 3. Subsequently, the full-text screening was
further performed to exclude 36 articles, of which 30 were not
related to the classification of aspiration, 4 involved invasive
instruments, and 2 were targeted for non-instrumental screening.
In the end, 9 articles were eligible for data synthesis (Lee et al., 2006;
Lee et al., 2011; Merey et al., 2012; Sarraf Shirazi et al., 2012; Sejdic
et al., 2013; Sarraf Shirazi et al., 2014; Frakking et al., 2022; Park et al.,
2022; Shu et al., 2022).

4 Study source

There were five studies led by research institutes from Canada
(Lee et al., 2006; Lee et al., 2011; Merey et al., 2012; Sarraf Shirazi
et al., 2012; Sarraf Shirazi et al., 2014), two from the United States
(Sejdic et al., 2013; Shu et al., 2022), one from Australia (Frakking
et al., 2022) and one from South Korea (Park et al., 2022). In
addition, three of the leading teams were from clinical institutes/
departments (Lee et al., 2006; Frakking et al., 2022; Park et al., 2022),
while the other eight studies were either from departments of
bioengineering/biomedical engineering (Lee et al., 2011) (Merey
et al., 2012; Sarraf Shirazi et al., 2012) or departments of electrical
and computer engineering (Sejdic et al., 2013; Sarraf Shirazi et al.,
2014; Shu et al., 2022). The included studies were published in
Dysphagia (Frakking et al., 2022), Journal of Neuroengineering and
Rehabilitation (Lee et al., 2006; Merey et al., 2012), Artificial
Intelligence in Medicine (Lee et al., 2011), Medical and Biological

TABLE 1 Domains and signaling questions in QUADAS-2 (Whiting et al., 2011).

Domain Assessment Signaling questions

Patient selection Risk of bias Was a consecutive or random sample of patients enrolled?

Was a case-control design avoided?

Did the study avoid inappropriate exclusions?

Applicability concerns Are there concerns that the included patients and setting do not match the review question?

Index test Risk of bias Were the index test results interpreted without knowledge of the results of the reference standard?

If a threshold was used, was it pre-specified?

Applicability concerns Are there concerns that the index test, its conduct, or interpretation differ from the review question?

Reference test Risk of bias Is the reference standard likely to correctly classify the target condition?

Were the reference standard results interpreted without knowledge of the results of the index test?

Applicability concerns Are there concerns that the target condition as defined by the reference standard does not match the question?

Flow and timing Risk of bias Was there an appropriate interval between index test and reference standard?

Did all patients/samples receive the same reference standard?

Were all patients/samples included in the analysis?
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Engineering and Computing (Sarraf Shirazi et al., 2012; Sarraf Shirazi
et al., 2014), IEEE Transaction of Biomedical Engineering (Sejdic
et al., 2013), IEEE Journal of Biomedical and Health Informatics (Shu
et al., 2022), and Scientific Reports (Park et al., 2022) that spanned
across the clinical, engineering, and interdisciplinary science fields.
It should be noted that the majority of the work has been published
or is connected to the same research team.

5 Study characteristics

5.1 Populations

The eligible studies (n = 9) involved a total of 960 participants
(427 males, 307 females, and 40 unspecified genders) in their
experiments, as shown in Table 2. The sample size of the studies
ranged from 10 to 234. The target population was divided into two
age groups: children and adults. Three studies (n = 187, males = 107,
females = 71) involved dysphagic children, of which two recruited
children of about 6 years old (Lee et al., 2006; Merey et al., 2012) and
the other was about 1 year old (Frakking et al., 2022). Most of them
had feeding disorders. Cerebral palsy was among the common

pathologies at-risk of aspiration in these studies, in addition to
developmental delays. Since Frakking et al. (2022) recruited younger
children, they also considered related congenital syndromes, such as
Beckwith-Wiedemann syndrome, Cri-du-chat syndrome, and Pierre
Robin syndrome. Moreover, Frakking et al. (2022)’s study was the
only one to recruit healthy participants as controls among the nine
studies.

For studies that recruited adults (n = 763, males = 320, females =
236, gender unspecified = 40), the mean ages ranged from 19.0 to
72.2 years. The large age span was due to the different sources of
dysphagia that could be divided into neurogenic and
neurodegenerative factors. The participants with neurogenic
dysphagia could have suffered from stroke or an acquired brain
injury, while those with neurodegenerative conditions might be
affected by dementia, Parkinson’s disease, or Alzheimer disease.
Three studies considered neurogenic dysphagia patients (Lee et al.,
2011; Park et al., 2022; Shu et al., 2022), while two considered both
neurogenic and neurodegenerative patients (Sarraf Shirazi et al.,
2012; Sarraf Shirazi et al., 2014). One study did not specify the
potential cause of dysphagia (Sejdic et al., 2013).

Two studies have further considered the sub-classification of
dysphagia severity or higher risk of aspiration (Sarraf Shirazi et al.,

FIGURE 1
PRISMA flowchart of systematic search and screening.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Lai et al. 10.3389/fbioe.2023.1205009

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1205009


2014; Park et al., 2022). Park et al. (2022) found that 52.1% (n = 234)
of the participants were recognized as having severe dysphagia, and
44.9% of these severe cases (n = 105) were confirmed to have
aspiration pneumonia, pleural effusion, or bronchitis. Besides,
Sarraf Shirazi et al. (2014) identified severe dysphagic individuals
if they presented more than half or five aspirated swallows in the
swallowing assessments.

5.2 Index test

5.2.1 Instruments and testing procedures
As shown in Table 3, accelerometric and acoustic techniques

were used for the index tests in three (Lee et al., 2006; Lee et al., 2011;
Merey et al., 2012) and four studies (Sarraf Shirazi et al., 2012; Sarraf
Shirazi et al., 2014; Frakking et al., 2022; Park et al., 2022),
respectively, while two studies used both accelerometric and
acoustic techniques (Sejdic et al., 2013; Shu et al., 2022).
Interestingly, single-axis (Lee et al., 2006), dual-axis (Lee et al.,
2011; Merey et al., 2012; Sejdic et al., 2013), and tri-axis
accelerometers (Shu et al., 2022) were all reported. A single-axis
accelerometer (EMT 25-C, Siemens) was placed inferoanterior to the
thyroid notch, receiving signal frequencies from 30 Hz to 20 kHz
(Lee et al., 2006). Besides, all three studies that utilized dual-axis
accelerometers had aligned them along the anterior-posterior (A-P)
and superior-inferior (S-I) directions (Lee et al., 2011; Merey et al.,
2012; Sejdic et al., 2013). Merey et al. (2012) processed the dual-axis
accelerometric signals by downsampling to 1 kHz (Lee et al., 2008),
segmenting through the robust algorithm for pitch tracking (RAPT)

(Sejdić et al., 2010a), detrending the low-frequency component
using least-square spine approximation (Sejdić et al., 2010b) and
then de-noising using the Meyer wavelet transform with soft
thresholding. Lee et al. (2011) utilized a similar accelerometer
configuration in the A-P and S-I directions but placed the sensor
just below the thyroid cartilage. Additionally, the authors
incorporated the system with an airflow pressure transducer
(PTAF Lite, Grass Technologies) and a nasal cannula (Pro-Flow
Cannulas Model 1,259, Glass Technologies) to measure the signal of
nasal airflow. They implemented a 5-level discrete wavelet
decomposition using Daubechies 5 wavelets and high-passed the
signal using a 4th order Butterworth filter with a 1-Hz cutoff
frequency.

Sejdic et al. (2013) and Shu et al. (2022) applied dual-axial and
tri-axial accelerometers, respectively, and placed them anterior to
the cricoid cartilage, in addition to a microphone. Both studies
bandpassed the signal from 0.1 Hz to 3 kHz. Besides, Sarraf Shirazi
et al. (2014) and Sarraf Shirazi et al. (2012) recorded the sound with a
microphone at the suprasternal notch of the trachea at 44.1 kHz and
band-passed it at a range between 150 Hz and 5 kHz. The authors
attempted to separate the sounds of breathing and swallowing
through an aural and visual examination of the time-frequency
signal spectrum. On the other hand, while Frakking et al. (2022)
made use of an omnidirectional condenser microphone (C417, AKG
Acoustics, Vienna, Austria) in the form of a circular O-ring lateral to
the cricoid cartilage, Park et al. (2022) recorded the speaking sound
using an iPad (with an embedded microphone) placed 20 cm in
front of the participants’ faces (Umayahara et al., 2018). The
sampling frequency was 44.1 kHz and was band-passed between

TABLE 2 Participant information.

Article Population Sample
size

Sex (male:
female)

Mean age (years) (SD,
range)

Frakking et al.
(2022)

Children with feeding disorders 18 11:7 Median age = 10.5 months
(range 2–701)

Typically developing children (healthy control) 23 12:11 Median age = 13 months
(range 4–33)

Lee et al. (2006) Children suspected at risk of aspiration 117 64:53 6.0 (3.9, N/A)

Lee et al. (2011) Adults suffered from stroke or acquired brain injury 24 20:4 64.8 (18.6, N/A)

Merey et al. (2012) Children diagnosed with neurological conditions and feeding disorders 29 20:0 6.8 (4.8, N/A)

Park et al. (2022) Patients with suspected swallowing disorder attributable to brain lesion,
excluding neurodegenerative disorders

Mild: 215 135:137 Mild: 65.7 (13.2, N/A)

Severe: 234 Severe: 72.2 (11.2, N/A)

Sarraf Shirazi et al.
(2014)

Dysphagic adult patients with stroke, acquired brain injury, or
neurodegenerative disorders

Mild: 39 39:11 60 (20, N/A)

Severe: 11

Sarraf Shirazi et al.
(2014)

Dysphagia adult patients with stroke, acquired brain injury, or
neurodegenerative disorders

21 11:10 Aspirated group: 58.4 (19.1,
23–81)

No information for non-
aspirated group

Sejdic et al. (2013) Dysphagia patients 40 N/A N/A

Shu et al. (2022) Suspected neurogenic dysphagia 189 115: 74 Males: 23–97

Females: 19–89

N/A, not available; SD, standard deviation.
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20 Hz and 8 kHz. In summary, all studies included the bandwidth of
signals between 150 Hz and 3 kHz.

Regarding the protocol for measurement, most of them referred
to the standard swallowing assessment procedures that fed food/
liquid with different consistencies or thicknesses (Lee et al., 2006;
Lee et al., 2011; Merey et al., 2012; Frakking et al., 2022; Shu et al.,
2022). Nevertheless, some studies determined the swallowing items
by the speech pathologists (Sarraf Shirazi et al., 2012; Sarraf Shirazi
et al., 2014). All of them coated/diluted the food/liquid with barium
to facilitate the reference test using VFSS. Park et al. (2022)’s study
was the only one that did not involve swallowing tasks (neither
eating nor drinking). They aimed at the speaking sound and asked
the participants to phonate a single syllable for at least 5 s with a
comfortable pitch and loudness. The pieces consisted of single vowel
phonations that were easy to follow.

5.2.2 Features
As shown inTable 4, predetermined time domain statistical features

were commonly adopted in the studies for both accelerometric and
acoustic signals, including, mean, variance, standard deviation, median,
interquartile range, skewness, and kurtosis (Lee et al., 2006; Lee et al.,
2011; Merey et al., 2012; Shu et al., 2022), while some studies
implemented variations on the predetermined statistical features,
such as normality, significance value of the normality test, and the
absolute difference between mean and median (Lee et al., 2006; Lee
et al., 2011; Merey et al., 2012). The dispersion ratio was defined as the
ratio between the mean absolute deviation (MAD) and the interquartile
range (IQR) (Lee et al., 2006), while the feature of stationarity reflected

that the mean and variance of the signal did not change with time and
was calculated using the reverse arrangement test (Bendat and Piersol,
2011). Energy, entropy rate, and Lempel-Ziv complexity were also
considered in the studies. The maximum hyolaryngeal excursion was
estimated by double integrating the accelerometer signal (Lee et al.,
2011; Merey et al., 2012). Jitter and shimmer features were commonly
accounted for in acoustic signals, including a series of features on the
perturbation quotient (Park et al., 2022). Park et al. (2022) concatenated
those features with and without clinical data of the participants.

Sarraf Shirazi et al. (2014) proposed using features inspired
by the phase-space thresholding technique that originated from
acoustical doppler velocimetry (Cea et al., 2007). In brief, the
acoustic signals were plotted against the first and second
derivatives and fitted with an ellipsoid. The summed distance
between the points outside the ellipsoid and the ellipsoid center
were calculated and normalized to the total energy (in the time
domain) to serve as the feature. Another paper from the team
(Sarraf Shirazi et al., 2012) reported another feature targeting the
average power values. They calculated the sum of the squared
values for those greater than the third quartile and normalized it
to the sum of all squared values.

Typical frequency domain signal features included peak
frequency, centroid frequency, band width, peak Fast Fourier
Transform (FFT) magnitude, and frequency at the spectral peak
(Lee et al., 2011; Merey et al., 2012; Shu et al., 2022). Besides,
Merey et al. (2012) inspected the frequency features on the
spectral density spectrogram, including that maximum, the
difference between 75% and 25% of the maximum spectral

TABLE 3 Instrument configuration and testing protocol.

Article Modality Instrument Configuration Protocol

Frakking et al.
(2022)

Acoustic Omnidirectional Condenser
microphone

Lateral to the cricoid cartilage
at C6

Two presentations of puree, lumpy mash, chewable solid,
extremely thick, moderately thick, mildly thick, slightly
thick and/or thin fluids. Only one swallow on thin fluids

per patient was used

Lee et al. (2006) Accelerometry Single-axis accelerometer (EMT 25-C) Inferoanterior to the thyroid
notch

Barium-coated boluses of varying consistencies, ranging
from thick puree to thin liquid, were fed

Lee et al. (2011) Accelerometry Dual-axis accelerometer (ADXL322)
for valleculae and pyriform sinuses

Just below the thyroid cartilage Beginning with a thin liquid 40% weight per volume
barium suspension and progressing through nectar- and

spoon-thick liquids to solid
Airflow
pressure

Nasal Cannula with pressure
transducer (PTAF Lite)

At the nares

Merey et al.
(2012)

Accelerometry Dual-axis accelerometer (ADXL322) Level of cricoid cartilage Barium-coated boluses of varying consistencies, ranging
from thick puree to thin liquid, were fed

Park et al. (2022) Acoustic Embedded microphone of an iPad 20 cm from patient’s face Phonate a single syllable for at least 5 s with comfortable
pitch and loudness. No swallowing task

Sarraf Shirazi
et al. (2014)

Acoustic Microphone (ECM-77B) On the suprasternal notch of
trachea

Different type of solid/liquid food. Type and order
determined by speech pathologist

Sarraf Shirazi
et al. (2012)

Acoustic Microphone (ECM-77B) On the suprasternal notch of
trachea

Different type of solid/liquid food. Type and order
determined by speech pathologist

Sejdic et al.
(2013)

Accelerometry Dual-axis accelerometer (ADXL322) Anterior to the cricoid cartilage 5 mL sips of thin liquid barium

Acoustic Lapel microphone Around the neck

Shu et al. (2022) Accelerometry Tri-axis accelerometer (ADXL327) Anterior to the cricoid cartilage Swallowing assessment in clinical routine

Acoustic Contact microphone (C411L) Slightly below the accelerometer
anterolateral to larynx
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density, in addition to 20 more features derived by the
summation of power spectral density values.

Features related to wavelets and wavelet decomposition were
related to the time-frequency domain, which helped capture
nonstationary nature of signals (Chau et al., 2005). Besides the
energy and entropy of the wavelets, Sejdic et al. (2013) extracted the
wavelet packet coefficient from the discrete wavelet transform series.
Particularly, the authors compared and evaluated the combinations
of different wavelets (Coiflet and Meyer) and time-frequency
domain features of wavelets (log-energy and entropy) on the A-P
and S-I axes signals of the accelerometers (Sejdic et al., 2013).

5.2.3 Modeling (classifiers)
Six studies conducted the classification at the per-sample level

(i.e., classifying risky swallowing samples), while two studies
conducted the classification at the per-individual level
(i.e., classifying risky individuals). One study accounted for both
per-sample and per-individual levels. SVM was among the most
popular and promising classifiers in the review (Merey et al., 2012;
Sarraf Shirazi et al., 2014; Frakking et al., 2022; Shu et al., 2022), as
shown in Table 5. It is a supervised machine learning model that
separates data into categories (classification) by finding the best
hyperplane in a n-dimensional space (where n is the number of
features). Frakking et al. (2022) trained the SVMwith a 50:50 training-
to-testing ratio and subsequently performed hyperparameter tuning
using grid search through 5-fold cross-validation; Sarraf Shirazi et al.

(2014) distinguished individuals with severe aspiration using SVM,
which input a phase-space representation of breathing sound.
Literature has compared the performance of SVM with other
statistical models/machine learning models. For example; Shu et al.
(2022) compared SVM with k-means, Naive Bayes, and an artificial
neural network (ANN). Park et al. (2022) compared SVMwith logistic
regression, decision tree, random forest, Gaussianmixture model, and
extreme gradient boosting (XGBoost). In fact, Park et al. (2022)
adopted a two-step classification approach. First, they identified
individuals with severe dysphagia and those with mild or minimal
cases. Then, for those severe dysphagia cases, they identified whether
they had a risk of respiratory complications (not included in the
tables). Hyperparameters were not tuned but assigned default values.

A similar two-step classification was adopted by Sarraf Shirazi
et al. (2014). They classified the individuals into aspirated and non-
aspirated groups. Then, they classified the risky swallows as part of
the aspirated group. The former was facilitated by a minimal
distance classifier (without addressing the kind of minimal
distance classifier) on the normalized energy feature of the third
quartile, while the latter was entertained by the unsupervised model,
fuzzy k-means clustering. Hyperparameter tuning was conducted by
repeating the distance-based probability distribution until the cost
function reached a local minimum.

While Lee et al. (2006) evaluated the performance of a radial
basis function (RBF) classifier with different combinations of
features, their later work (Lee et al., 2011) tested four classifiers

TABLE 4 Summary of extracted features from accelerometric and acoustic signals for aspiration risks classification.

Modality Domain Feature Reference

Accelerometry Time Statistical features (mean, median, variance, skewness, kurtosis, Interquartile Range), Absolute difference
between mean and median Stationary, normality, dispersion ratio Significance level of normality, Maximum
hyolaryngeal excursion, proportion of signal corresponding to maximum hyolaryngeal excursion Zero-crossing

Energy, entropy rate, Lempel-Ziv complexity Linear prediction coefficient

Lee et al. (2006)

Lee et al. (2011)

Merey et al. (2012)

Shu et al. (2022)

Frequency Peak frequency, centroid frequency Band width Peak Fast Fourier Transform magnitude, frequency at spectral
peak Frequency corresponding to max spectral density over time of the short-time Fourier transform Difference
between frequency corresponding to 75% and 25% of max spectral density at time corresponding to max

frequency Statistical features of power spectrum

Lee et al. (2011)

Merey et al. (2012)

Shu et al. (2022)

Time-
frequency

Wavelet entropy and energy Wavelet packet coefficient Relative energy and entropy for wavelet decomposition Lee et al. (2011)

Sejdic et al. (2013)

Shu et al. (2022)

Acoustics Time Statistical features (standard deviation, skewness, kurtosis) Entropy rate, Lempel-Ziv complexity Phase-space
thresholding, Normalized energy of the 3rd quartile of average power Jitter and shimmer features

Sarraf Shirazi et al.
(2012)

Sarraf Shirazi et al.
(2014)

Park et al. (2022)

Shu et al. (2022)

Frequency Peak frequency, centroid frequency Band width Frakking et al. (2022)

Shu et al. (2022)

Time-
frequency

Wavelet Entropy Wavelet packet coefficient Sejdic et al. (2013)

Shu et al. (2022)
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with a total of nine paradigms, including linear discriminant analysis
(LDA) using Euclidean and Mahalanobis distance measures, feed-
forward non-linear (NN) classifiers with 10, 20, and 30 hidden units,
a probabilistic neural network (PNN) and K-nearest-neighbor
(KNN) with 11, 21, and 31 neighbors. The data were resampled
to generate 10,000 samples per class. Regularization was followed by
an early stop on the cross-validation to prevent overfitting. Similarly,
Merey et al. (2012) also applied the LDA approach but reduced the
dimensionality of features by principal component analysis (PCA).
Additionally, Merey et al. (2012) evaluated SVMwith a linear kernel,
an RBF kernel, and an RBF kernel with a B2 optimizer (Jolliffe,
1972). Besides, Sejdic et al. (2013) applied Bayes classifiers and
compared different wavelets and their spectrum features (log-energy
or entropy) of the A-P and S-I components of the dual-axis
accelerometer.

5.3 Reference test

The VFSS served as the reference test for all papers, while some
also considered the FEES (Sarraf Shirazi et al., 2012; Sarraf Shirazi
et al., 2014) and spirometry (Park et al., 2022) (Table 5). The
presence or risk of aspirating swallows or aspirating individuals
was determined by physicians examining the VFSS/FEES, especially
speech pathologists. Spirometry through peak cough flow (Kulnik
et al., 2016) was used to evaluate the risk of respiratory
complications (Park et al., 2022). The penetration-aspiration scale
was commonly used to help physicians make diagnoses more

objectively (Rosenbek et al., 1996), despite the fact that there was
a variation on how to use the scale. The total score for the scale was
eight, in which scores above six represented entries of bolus below
the level of vocal cords and were regarded as aspiration swallows.
Both Sejdic et al. (2013) and Shu et al. (2022) set a threshold above
three for “unsafe” swallows. Moreover, Lee et al. (2011) rated the
swallows in three domains: airway invasion, bolus clearance at
valleculae, and bolus clearance at pyriform sinuses, which were
rated by the 4-point depth of airway invasion scale and the 4-point
bolus clearance scale, respectively. Only cases rated at levels 0 (safe)
and 3 (materials entering the airway/substantial residual material
filling or overflowing) were investigated in the study. Besides, Merey
et al. (2012) used a 3-point swallowing rating (0: materials do not
enter the airway; 1: materials enter the airway but do not pass below
the vocal folds; 2: materials enter the airway and pass below the vocal
folds) and only selected participants that rated zero and two in their
study.

5.4 Outcome and performance evaluation

Accuracy, sensitivity, and specificity were the standard outcome
measures used to evaluate diagnostic/screening accuracy and were
derived from the confusion matrix (or 2 × 2 contingency table)
(Figure 2). Accuracy is the ratio of correct tests to the total number
of tests. Sensitivity shows the proportion of positive diagnoses from
the index test that are also detected as positive by the reference test,
while specificity indicates the proportion of negative diagnoses from

TABLE 5 Modeling and model training strategy.

Article Binary classifier Swallow sample (aspirated/
unsafe vs. normal)

Reference
test

Training strategy

Frakking et al.
(2022)

SVM 18 vs. 106 VFSS 50:50 training-to-testing ratio, 5-fold CV
for hyperparameter tuning

Lee et al. (2006) RBF 94 v. 100 VFSS 10-fold CV

Lee et al. (2011) 3 channels (airway invasion, valleculae
clearance and pyriform sinuses bolus

clearance) on 9 classifiers (LDA
Euclidean, LDA Mahalanobis, NN (10,
20, 30 HUs), PNN, and KNN (K = 11,

21, 31)

Airway invasion: 39 vs. 265 Valleculae
BC: 64 vs. 61 Pyriform sinuses BC:

25 vs. 129

VFSS 10-fold CV

Merey et al. (2012) LDA w/Euclidean, LDA w/Mahalanobis,
SVM linear, SVM RBF, SVM RBF +

B2 optimizer

94 vs. 544 VFSS 8-fold CV, bootstrapping to balance class

Park et al. (2022) Logistic Regression, Decision Tree,
Random Forest, SVM, GMM, XGBoost

N/A (per-patient) VFSS and
spirometry

-

Sarraf Shirazi et al.
(2014)

SVM N/A (per-patient) VFSS or FEES Leave-one-out

Sarraf Shirazi et al.
(2012)

Minimum distance classifier N/A (per-patient) VFSS or FEES Leave-one-out

Fuzzy k-means clustering 32 vs. 128

Sejdic et al. (2013) Bayes - VFSS Leave-one-out

Shu et al. (2022) SVM, k-means, Naive Bayes, ANN 378 vs. 1701 VFSS 10-fold CV

ANN, artificial neural network; BC, bolus clearance; CV, cross-validation; FEES, fiberoptic endoscopic evaluation of swallowing; GMM, gaussian mixture model; HU, hidden units; KNN,

k-nearest-neighbor; LDA, linear discriminant analysis; N/A, not applicable; NN, feed-forward non-linear classifier; PNN, probabilistic neural network; RBF, radial basis function; SVM, support

vector machine; XGBoost, Extreme gradient boosting; VFSS, videofluoroscopic swallowing study; w/: with.
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the index test that are also detected as negative by the reference test.
Three studies reported the F1-score. The F1-score quantifies the
balance between precision (PPV) and recall (or sensitivity) by taking
the harmonic mean, which partially accounts for the imbalanced
class problem but does not take into account the cost of
misclassifying the minor class. Shu et al. (2022) reported the
Matthews Correlation Coefficient (MCC), which ranges from −1
(complete disagreement) to +1 (perfect agreement), with
0 indicating random predictions. Besides, AUC manifests the
discrimination capability of a binary classifier by plotting the
sensitivity and specificity at different classification thresholds.

Highly imbalanced classes are a prevalent issue in healthcare and
medicine (Jothi and Husain, 2015; Mao et al., 2022; Mao et al., 2023)
since it is natural to have fewer positive than negative cases (i.e., non-
healthy cases are often underrepresented), which was also reflected
in our review (Table 4). It should be noted that some studies defined
“adjusted accuracy” by taking a simple average of sensitivity and
specificity and claimed that the parameter could resolve the
imbalanced class issue, with which we disagreed. In fact,
resampling (Lee et al., 2011), bootstrapping (Merey et al., 2012),
data augmentation (Shu et al., 2022), and Mahalanobis distance
measures were applied to accommodate the imbalanced class
problem. There were also other oversampling techniques (Santos
et al., 2018), such as the Synthetic Majority Oversampling Technique
(SMOTE) and the Adaptive Synthetic Sampling Approach
(ADASYN).

To calculate the accuracy performance, testing data that are
independent of the data for model training (or fitting) are essential
to ensure that the model can generalize well to new data (i.e., to

prevent overfitting) (Poldrack et al., 2020). Frakking et al. (2022)
used half of the data for training and half for testing, even though the
authors utilized the cross-validation technique for hyperparameter
tuning. Nevertheless, one study did not specify whether they had
implemented an independent testing set (Sarraf Shirazi et al., 2012).
In fact, cross-validation is a technique to facilitate independent
testing with a relatively small sample size. It involves verifying the
accuracy of the model by dividing subsets (folds) of training and
testing data and calculating their average performance. Our review
found that existing studies applied 8-fold (Merey et al., 2012), 10-
fold (Lee et al., 2006; Lee et al., 2011; Shu et al., 2022), and leave-one-
out (Sarraf Shirazi et al., 2012; Sejdic et al., 2013; Sarraf Shirazi et al.,
2014) cross-validation.

Table 6 shows the key findings of the studies. Since some studies
presented lengthy results of different combinations of features/
hyperparameters, we only included the results of the best-
performing combination for Lee et al. (2006), Lee et al. (2011),
and Sejdic et al. (2013). In addition, Shu et al. (2022) evaluated
different data augmentation strategies, and we presented that with
AC-GAN (auxiliary classifier Wasserstein generative adversarial
network), which was the targeted innovation of the paper.
Moreover, we presented outcomes for Park et al. (2022) that
made use of the acoustic signal data only (i.e., did not present
the results for acoustic plus clinical data).

We found three studies with excellent accuracy (≥90%) (Sarraf
Shirazi et al., 2012; Sejdic et al., 2013; Frakking et al., 2022), while
four studies had an accuracy or adjusted accuracy between 80% and
90% (Lee et al., 2006; Lee et al., 2011; Merey et al., 2012; Sarraf
Shirazi et al., 2014). Two studies demonstrated an accuracy <80%.

FIGURE 2
Confusion matrix (2 × 2 contingency table) demonstrating outcome measures for accuracy evaluation. F1: F1-score; BCR, balanced classification
rate; MCC, Matthew’s correlation coefficient; Y1, Youden’s index.
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Frakking et al. (2022) and Sejdic et al. (2013) achieved accuracy of
98% and 94.6% using SVM and Bayes, respectively. In addition, the
latter picked the log-energy features and considered the Coiflet-5
and Coiflet-3 wavelets for A-P and S-I accelerometry, respectively.
Sarraf Shirazi et al. (2012) could identify unsafe swallows with 86.4%
accuracy. While Lee et al. (2006) compared 31 feature combinations,
the best yield was using the dispersion ratio, energy, and normality at
82.1% accuracy. The same team measured the accelerometry of

pyriform sinuses using LDAMahalanobis produced a sensitivity and
specificity of more than 80%. Merey et al. (2012) performed a bit
better, with an accuracy of 86.9% using SVMwith an RBF kernel and
B2 optimizer (for feature reduction). Using the proposed AC-GAN,
the classification performance for SVM was 75.0%, reported by Shu
et al. (2022). Nonetheless, classification performance for other GAN
models seemed to be better than the proposed one. Park et al. (2022)
classified the acoustic signal using XGBoost, which produced an

TABLE 6 Outcome metrics and test performance.

Article Classifier Test performance outcome metrics

Acc Sn/Rc Sp PPV/Pc NPV AUC Others

Frakking et al. (2022) SVM 98 89 100 100 100 - F1: 0.94

Lee et al. (2006)(a) RBF 82.1 74.7 87.8 - - - Adj. accuracy: 81.3

Lee et al. (2011)(a) Airway invasion: LDA Euclidean - 100 49.4 - - - Adj. accuracy: 74.7

Valleculae BC: LDA Mahalanobis - 75.5 91.9 - - - Adj. accuracy: 83.7

Pyriform sinuses BC: LDA w/Mahalanobis - 81.7 86.8 - - - Adj. accuracy: 84.2

Merey et al. (2012) LDA w/Euclidean 62.8 50.7 74.9 - - - -

LDA w/Mahalanobis 60.6 69.8 51.4 - - - -

SVM linear 62.0 51.5 72.4 - - - -

SVM RBF 80.6 80.0 81.2 - - - -

SVM RBF + B2 optimizer 86.9 89.6 92.2 - - - -

Park et al. (2022) (b) Logistic Regression 68.2 65.7 70.7 69.3 67.8 0.69 F1: 0.67

Decision Tree 69.0 62.0 76.0 73.3 66.6 0.70 F1: 0.67

Random Forest 73.7 70.7 76.7 75.7 72.5 0.78 F1: 0.73

SVM 69.7 71.0 68.3 69.4 70.2 0.68 F1: 0.70

GMM 66.2 64.7 67.7 66.3 67.5 0.64 F1: 0.64

XGBoost 74.8 72.7 77.0 76.8 74.8 0.78 F1: 0.74

Sarraf Shirazi et al. (2014) SVM 86.0 91.0 84.0 - - - -

Sarraf Shirazi et al. (2012) Classify population: min distance classifier 90.0 - - - - - -

Classify swallow: fuzzy k-means 86.4 86.4 86.4 61.5 96.2 - -

Sejdic et al. (2013) (a) Bayes 94.6 92.5 95.6 - - - -

Shu et al. (2022) Naïve Bayes w/AC-GAN 66.38 39.03 74.6 - - - F1: 22.02

MCC: 0.0324

K-means w/AC-GAN 72.94 12.40 86.41 - - - F1: 13.24

MCC: −0.0009

SVM w/AC-GAN 75.02 21.71 86.84 - - - F1: 22.83

MCC: 0.0938

ANN w/AC-GAN 71.39 32.84 79.78 - - - F1: 28.75

MCC: 0.1171

Classifier column: AC-GAN, auxiliary classifier Wasserstein generative adversarial network; BC, bolus clearance; GMM, gaussian mixture model; LDA, linear discriminant analysis; RBF, radial

basis function; SVM, support vectormachine; XGBoost, Extreme gradient boosting; w/, with. Outcomemetrics column: Acc, accuracy; AUC, area under receiver-operating curve; NPV, negative

predictive value; Pc, precision; PPV, positive predictive value; Rc, recall; Sn: sensitivity; Sp, spec-ificity.
aClassifiers with feature combination of the best accuracy/adjusted accuracy are shown in this table.
bPerformance for classifying mild/severe dysphagia or aspirated using model trained by acoustics only (without clinical data) is shown in this table.
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accuracy of 74.8%, yet the performance was better than the model
using both the acoustic signal and clinical data.

6 Study quality (risk
of bias and applicability)

Out of the seven items, the average point of the studies was 5.44,
with a standard deviation of 1.13 (Figure 3). All items under
applicability concerns were scored since all studies provided
physician diagnosis and benchmarking instrument data to justify
the patients and/or events. Nearly all papers lost points on the
patient selection domain without clarifying whether the participants
were recruited consecutively or by random sampling. All except one
study conducted the index test and reference test simultaneously,
while some studies lost points for not using the same reference
standard. Besides, a risk of bias was also found for studies that

excluded patients because they could not complete the test or
discarded data with problems.

7 Meta-analysis

Among the nine included studies, five were further processed for
meta-analysis. One study was discarded due to the lack of sample
count information (Sejdic et al., 2013). Two studies were discarded
because they were not classifying risky swallows (i.e., not per-sample
level) but individuals at risk of aspiration (i.e., per-individual level)
(Sarraf Shirazi et al., 2014; Park et al., 2022). We eliminated one
study because the leave-one-out validation cannot be used to
estimate the sample counts (Sarraf Shirazi et al., 2012).

The pooled diagnostic odds ratio was 21.5 (95%CI, 2.7–173.6),
which was higher than the cut-off of 10.00 (Deeks, 2001) but not
significant. The coupled forest plot and the forest plot of the log

FIGURE 3
Study quality of the reviewed studies assessed by QUADAS-2.
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diagnostic odds ratio (Figure 4) demonstrated that there were high
standard errors within studies that might be due to small sample
sizes, in addition to variations between studies. Sensitivity could be
as low as 21% (95%CI, 10%–37%) while specificity could be as high
as 100% (95%CI, 93%–100%), in individual studies. By observing the
SROC plot (Figure 4), it could be seen that the study-level data
points dispersed over the ROC space, far away from the summary
line, and with a large confidence region, which demonstrated
substantial heterogeneity. In view of this, we decided not to
conclude the meta-analysis result.

8 Discussion

The significance of this study lies in its ability to summarize
the accuracy performance and assessment techniques used in
computer-aided screening for dysphagia risks using biophysical
sensors. While overall accuracy has often been reported as an
indicator of model performance, sensitivity is a more clinically
important attribute for screening tools to identify those at greater
risk (Wirth et al., 2016). Our review demonstrated that the
current systems in our included studies were insufficient, with
only two studies (with their best optimized models)
demonstrating a sensitivity of more than 90%. Interesting,
more information seemed not to produce better results (e.g.,
concatenating clinical history data (Park et al., 2022) and
integrating tri-axial accelerometer and acoustic signals (Shu
et al., 2022)). There is a need to improve the generalizability
of the system with a larger dataset, and optimize the signal
processing, segmentation, feature extraction, classifier, and
their combinations to improve the accuracy performance.

Clinical heterogeneity could be sought from gender and age-group,
the source of dysphagia/aspirations, and the assessment protocols.
Gender could be a significant confounder in this scenario, with the
Adam’s apple and deeper voice in adult males apparently influencing
the throat biomotion and acoustic signals (So et al., 2023). We found
no study that submitted gender as an input feature. On the other
hand, dysphagic aspiration could be sourced from different
pathophysiologies (Wirth et al., 2016). For example, age-related
dysphagia (i.e., presbyphagia) demonstrated reduced tongue pressure
and delayed triggering of swallow reflection (Rofes et al., 2010), while
dementia was characterized by a compulsive eating pattern and a large
bolus size (Langmore et al., 2007). Besides, post-stroke patients
experienced decreased activation of swallowing because of the lesion
of motor neurons (Teismann et al., 2011). These differences in
abnormalities might render different signal patterns of aspiration
risks, which could be the reason for the large standard error of the
study and the high heterogeneity between studies. Lastly, while studies
followed a “routine swallowing assessment” protocol by taking different
constituencies and thicknesses of food/liquid, the procedure details
were vague, and we are uncertain whether all or some swallow trials
were selected for the development of computer-aided screening. In
addition, only one study accounted for the non-swallowing task. A
previous review commented that protocol heterogeneity might hinder
the translational potential of wearable technology on swallowing
assessment (So et al., 2023) and that a unified framework was
necessary to account for both swallowing and non-swallowing
activities (Lim et al., 2023).

Besides methodological heterogeneity in terms of instruments,
feature extraction, and modeling, some technical issues might exist.
The performances between studies were very extreme, ranging from
21.7% to 100%. It is skeptical when accuracy falls below 50%, which

FIGURE 4
Coupled forest plot on the sensitivity and specificity, forest plot for a univariate random effects meta-analysis using diagnostic odds ratio and
summary plot of proportional hazard model (Lee et al., 2006; Lee et al., 2011; Merey et al., 2012; Frakking et al., 2022; Shu et al., 2022).
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is worse than random guessing. While achieving good accuracy is
desirable, obtaining perfect accuracy (i.e., 100%) from predictive
models is not possible in practice, since they are designed to
approximate underlying constitutive relationships by fitting with
the stochastic nature of data and algorithms (i.e., a simplified
construct related to a part of reality). Skeptical performances
could be due to underfitting (datasets too small), overfitting,
imbalance classes, misspecification of hyperparameters, and
regularization (Boulesteix and Schmid, 2014; Lever et al., 2016;
Kaur et al., 2019; Nichols et al., 2019; Weerts et al., 2020). While
several studies did not conduct hyperparameter tuning, cross-
validation techniques were often used and believed to relieve
overfitting but might be prone to data snooping or peeking
(Bzdok et al., 2017) and generate biased estimates, especially with
small sample size (Vabalas et al., 2019). Five studies recruited fewer
than 50 participants (i.e., independent samples). Data samples were
subsequently pooled through repeated measurements and data
augmentation techniques. Small datasets may produce strongly
spurious patterns. As a rule of thumb, 50 samples or 10 samples
per feature (Pedregosa et al., 2011; Riley et al., 2020; Scikit-learn
developers, 2023) are minimally needed to fit predictive or machine
learning models. In practice, more samples are required with higher
data dimensionality and the complexity of learning algorithms
(Bzdok et al., 2017). Lastly, it is important to scrutinize flaws in
the data and models.

There were some limitations in this study. Only English studies
were included in this study, which might lead to language bias. Besides,
the number of included studies was relatively small, especially since
several of themwere from the same research team. Their findingsmight
not be independent. Sterne et al. (2011) advised that a minimum of ten
studies be reviewed to achieve sufficient power to assess small-study
effects as a rule of thumb.On the other hand, we anticipated that flexible
electronics, or soft sensors (Jung et al., 2020; Chen et al., 2021c; Gao
et al., 2021; Guan et al., 2021), would be included in this review in the
first place, but in vain because most of them were still on the research
bench from clinical studies. Moreover, we did not conduct an in-depth
data synthesis on the signal processing techniques, which warranted
another technical review. For the meta-analysis, with the small dataset
and unclear risk of consecutive/random sampling, it is likely that the
pooled estimates of the meta-analysis lack generalizability and could be
misleading. While we endeavored to provide an overall estimate of the
area, we discovered that studies had uniquemethodological characteristics
andmajor differences in the sets of parameters/thresholds. It might not be
appropriate to summarize their test performance using meta-analysis.
Subgroup analyses were not conducted on different instruments
(accelerometers and microphones) and populations (older adults and
children) because of the small number of available studies. Besides,
studies using a cross-validation approach that did not have well-defined
counts of testing sets approximated the confusion matrix based on the
averaged results of cross-validation folds and the fold proportion, which
might not be viewed as a pertinent method in meta-analysis. With
increasing research using machine learning models for diagnostic or
screening purposes, there is a need for developing a new meta-analytic
approach targeting cross-validation and data resampling.

More effort is yet necessary to improve the accuracy performance of
the computer-aided screening systems to identify aspiration risks, in
addition to tests on larger sample sizes to ensure generalizability. A similar
conclusion has been reached by another review that targeted on systems

classifying swallowing and non-swallowing (e.g., speaking, yawning)
events (So et al., 2023). Deep learning models were not implemented,
which might be due to an insufficient dataset or a lack of a pretrained
model. One study utilized the GAN approach to “generate” more data.
Future work may consider improving the robustness and establishing
protocols for pragmatic exploitation and implementation. Compliance
could be a problem, especially with sensors that have to be stuck on the
neck (e.g., accelerometers). Patient-centered designs and feasibility studies
could be necessary to promote acceptance among patients and caregivers,
especially those with dementia (Merilahti et al., 2009; Gold et al., 2018).
Furthermore, these biophysical sensors could be incorporated and
improve swallowing therapy through gaming, virtual reality, and
biofeedback (Li et al., 2016; Mizoguchi et al., 2021; So et al., 2022).
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