11 research outputs found

    AN INVESTIGATION INTO THE DESIGN AND CONSTRUCTION OF A LOW REYNOLDS NUMBER SWIMMER

    Get PDF
    This work was motivated by the goal of building a robot capable of swimming on a microscopic scale by changing its shape. Two approaches to low Reynolds number swimming are studied. A deformable sphere is investigated which uses a method of construction called tensegrity to allow changes in shape. We found a method of matching tensegrity spheres to desired shapes and investigated the use of shape memory alloy coils as tensile elements. We propose a model for a box-shaped deformable swimmer, and a prototype is built and tested. The negative results from the prototype tests are then investigated by measuring the drag forces caused by pushing different block sizes through high viscosity fluid. Based on our experimental results we validate our approach and recommend design modifications for a second generation robot

    Action Without Awareness: Reaching to an Object You Do Not Remember Seeing

    Get PDF
    BACKGROUND: Previous work by our group has shown that the scaling of reach trajectories to target size is independent of obligatory awareness of that target property and that "action without awareness" can persist for up to 2000 ms of visual delay. In the present investigation we sought to determine if the ability to scale reaching trajectories to target size following a delay is related to the pre-computing of movement parameters during initial stimulus presentation or the maintenance of a sensory (i.e., visual) representation for on-demand response parameterization. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed immediate or delayed (i.e., 2000 ms) perceptual reports and reaching responses to different sized targets under non-masked and masked target conditions. For the reaching task, the limb associated with a trial (i.e., left or right) was not specified until the time of response cuing: a manipulation that prevented participants from pre-computing the effector-related parameters of their response. In terms of the immediate and delayed perceptual tasks, target size was accurately reported during non-masked trials; however, for masked trials only a chance level of accuracy was observed. For the immediate and delayed reaching tasks, movement time as well as other temporal kinematic measures (e.g., times to peak acceleration, velocity and deceleration) increased in relation to decreasing target size across non-masked and masked trials. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that speed-accuracy relations were observed regardless of whether participants were aware (i.e., non-masked trials) or unaware (i.e., masked trials) of target size. Moreover, the equivalent scaling of immediate and delayed reaches during masked trials indicates that a persistent sensory-based representation supports the unconscious and metrical scaling of memory-guided reaching

    Movement time (ms) for D0 and D2000 group no-mask and mask trials as a function of target index of difficulty.

    No full text
    <p>In addition, the top left hand corner of the figure presents regression equations and R<sup>2</sup> for each experimental condition.</p

    Reaction time (RT: ms), movement time (MT: ms), time to peak acceleration (tPA: ms), time to peak velocity (tPV: ms), time to peak deceleration (tPD: ms) and resultant error (RE: mm) as a function of target index of difficulty.

    No full text
    <p>In addition, regression equations and R<sup>2</sup> values for each dependent variable are depicted.</p><p>Values are means. Between-participant standard deviations are presented in parentheses.</p
    corecore