1,915 research outputs found

    John Wesley Elkins, Boy Murderer, and His Struggle for Pardon

    Get PDF

    Remembering Sally Burnett Sharp

    Get PDF

    Leveraged Buyouts and Tax Policy

    Get PDF

    Toward a Model for Fisheries Social Impact Assessment

    Get PDF
    This paper presents a model for Fisheries Social Impact Assessment (SIA) that lays the groundwork for development of fisheries-focused, quantitative social assessments with a clear conceptual model. The usefulness of current fisheries SIAā€™s has been called into question by some as incompatible with approaches taken by fisheries biologists and economists when assessing potential effects of management actions. Our modelā€™s approach is closer to the economistsā€™ and biologistsā€™ assessments and is therefore more useful for Fishery Management Council members. The paper was developed by anthropologists initially brought together in 2004 for an SIA Modeling Workshop by the National Marine Fisheries Service, NOAA. Opinions and conclusions expressed or implied are solely those of the authors and do not necessarily reflect the views or policy of the National Marine Fisheries Service, NOAA

    Rayleigh wave dispersion measurements reveal low-velocity zones beneath the new crust in the Gulf of California

    Get PDF
    Rayleigh wave tomography provides images of the shallow mantle shear wave velocity structure beneath the Gulf of California. Low-velocity zones (LVZs) are found on axis between 26 and 50ā€‰km depth beneath the Guaymas Basin but mostly off axis under the other rift basins, with the largest feature underlying the Ballenas Transform Fault. We interpret the broadly distributed LVZs as regions of partial melting in a solid mantle matrix. The pathway for melt migration and focusing is more complex than an axis-centered source aligned above a deeper region of mantle melt and likely reflects the magmatic evolution of rift segments. We also consider the existence of solid lower continental crust in the Gulf north of the Guaymas Basin, where the association of the LVZs with asthenospheric upwelling suggests lateral flow assisted by a heat source. These results provide key constraints for numerical models of mantle upwelling and melt focusing in this young oblique rift

    Human severe sepsis cytokine mixture increases Ī²2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro.

    Get PDF
    INTRODUCTION: Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. METHODS: The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). RESULTS: Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either Ī²2 (CD18), Ī±L/Ī²2 (CD11Ī±/CD18; LFA-1) or Ī±M/Ī²2 (CD11Ī²/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. CONCLUSIONS: Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a Ī²2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE

    Human severe sepsis cytokine mixture increases beta 2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro

    Get PDF
    Introduction: Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. Methods: The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). Results: Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either beta 2 (CD18), alpha(L)/beta(2) (CD11 alpha/CD18; LFA-1) or alpha(M)/beta(2) (CD11 beta/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. Conclusions: Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a beta 2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE
    • ā€¦
    corecore