1,254 research outputs found

    Validity of the Gor'kov expansion near the upper critical field in type II superconductors

    Full text link
    We have examined the validity of the Gor'kov expansion in the strength of the order parameter of type II superconductors near the upper critical field. Although the degeneracy of the electron levels in a magnetic field gives non- perturbative terms in the solution to the Bogoliubov-de Gennes equations we find, contrary to recent claims, that these non-perturbative terms cancel in the expression for the thermodynamic potential, and that the traditional Gor'kov theory is correct sufficiently close to Hc2 at finite temperature. We have derived conditions for the validity of the Gor'kov theory which essentially state, that the change in the quasiparticle energies as compared to the normal state energies cannot be too large compared to the temperature.Comment: 5 pages, 3 figures. One reference adde

    Decay of polarons and molecules in a strongly polarized Fermi gas

    Full text link
    The ground state of an impurity immersed in a Fermi sea changes from a polaron to a molecule as the interaction strength is increased. We show here that the coupling between these two states is strongly suppressed due to a combination of phase space effects and Fermi statistics, and that it vanishes much faster than the energy difference between the two states, thereby confirming the first order nature of the polaron-molecule transition. In the regime where each state is metastable, we find quasiparticle lifetimes which are much longer than what is expected for a usual Fermi liquid. Our analysis indicates that the decay rates are sufficiently slow to be experimentally observable.Comment: Version accepted in PRL. Added discussion of three-body losses to deeply bound molecular state

    Spin Excitations in a Fermi Gas of Atoms

    Full text link
    We have experimentally investigated a spin excitation in a quantum degenerate Fermi gas of atoms. In the hydrodynamic regime the damping time of the collective excitation is used to probe the quantum behavior of the gas. At temperatures below the Fermi temperature we measure up to a factor of 2 reduction in the excitation damping time. In addition we observe a strong excitation energy dependence for this quantum statistical effect.Comment: 4 pages, 3 figure

    The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817

    Get PDF
    The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counterpart led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be \sim10" from the nucleus of the S0 galaxy NGC 4993. We report here the luminosity distance to this galaxy using two independent methods. (1) Based on our MUSE/VLT measurement of the heliocentric redshift (zhelio=0.009783±0.000023z_{\rm helio}=0.009783\pm0.000023) we infer the systemic recession velocity of the NGC 4993 group of galaxies in the cosmic microwave background (CMB) frame to be vCMB=3231±53v_{\rm CMB}=3231 \pm 53 km s1^{-1}. Using constrained cosmological simulations we estimate the line-of-sight peculiar velocity to be vpec=307±230v_{\rm pec}=307 \pm 230 km s1^{-1}, resulting in a cosmic velocity of vcosmic=2924±236v_{\rm cosmic}=2924 \pm 236 km s1^{-1} (zcosmic=0.00980±0.00079z_{\rm cosmic}=0.00980\pm 0.00079) and a distance of Dz=40.4±3.4D_z=40.4\pm 3.4 Mpc assuming a local Hubble constant of H0=73.24±1.74H_0=73.24\pm 1.74 km s1^{-1} Mpc1^{-1}. (2) Using Hubble Space Telescope measurements of the effective radius (15.5" ±\pm 1.5") and contained intensity and MUSE/VLT measurements of the velocity dispersion, we place NGC 4993 on the Fundamental Plane (FP) of E and S0 galaxies. Comparing to a frame of 10 clusters containing 226 galaxies, this yields a distance estimate of DFP=44.0±7.5D_{\rm FP}=44.0\pm 7.5 Mpc. The combined redshift and FP distance is DNGC4993=41.0±3.1D_{\rm NGC 4993}= 41.0\pm 3.1 Mpc. This 'electromagnetic' distance estimate is consistent with the independent measurement of the distance to GW170817 as obtained from the gravitational-wave signal (DGW=43.86.9+2.9D_{\rm GW}= 43.8^{+2.9}_{-6.9} Mpc) and confirms that GW170817 occurred in NGC 4993.Comment: 9 pages, 5 figure

    A dipolar self-induced bosonic Josephson junction

    Full text link
    We propose a new scheme for observing Josephson oscillations and macroscopic quantum self-trapping phenomena in a toroidally confined Bose-Einstein condensate: a dipolar self-induced Josephson junction. Polarizing the atoms perpendicularly to the trap symmetry axis, an effective ring-shaped, double-well potential is achieved which is induced by the dipolar interaction. By numerically solving the three-dimensional time-dependent Gross-Pitaevskii equation we show that coherent tunneling phenomena such as Josephson oscillations and quantum self-trapping can take place. The dynamics in the self-induced junction can be qualitatively described by a two-mode model taking into account both s-wave and dipolar interactions.Comment: Major changes. Accepted for publication in EP

    Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette\u27s Syndrome and OCD

    Get PDF
    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette\u27s syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette\u27s syndrome and OCD. METHOD: The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette\u27s syndrome, 579 with OCD plus Tourette\u27s syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. RESULTS: Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2x10(-4)), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette\u27s syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette\u27s syndrome/chronic tics were included in the analysis (p=0.01). CONCLUSIONS: Previous work has shown that Tourette\u27s syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of these two disorders. Furthermore, OCD with co-occurring Tourette\u27s syndrome/chronic tics may have different underlying genetic susceptibility compared with OCD alone

    Metastability in spin polarised Fermi gases and quasiparticle decays

    No full text
    We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each process and calculated their rates, we apply this understanding to a Fermi sea of polarons by linking its metastability to the stability of individual polarons, and predicting a region of metastability for the normal partially polarised phase. In the limit of a single impurity, this region extends from the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose experiments to observe the threshold of the predicted region of metastability, the interaction strength at which the quasiparticle groundstate changes character, and the decay rate of polarons

    Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor

    Full text link
    We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a type-II two-dimensional superconductor within a self-consistent Gor'kov perturbation scheme. Assuming that the order parameter forms a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of the perturbation theory to fourth and eight order against an exact numerical solution of the corresponding Bogoliubov-de Gennes equations. The perturbation theory is found to describe the onset of superconductivity well close to the transition point Hc2H_{c2}. Contrary to earlier calculations by other authors we do not find that the perturbative scheme predicts any maximum of the dHvA-oscillations below Hc2H_{c2}. Instead we obtain a substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite Zeeman splitting. Furthermore we have investigated the recently debated issue of a possibility of a sign change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and we have found good agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004. Several sections changed or added, including a section on the effect of spin and the effect of a conserved number of particles. To be published in Phys. Rev.

    Exact particle and kinetic energy densities for one-dimensional confined gases of non-interacting fermions

    Full text link
    We propose a new method for the evaluation of the particle density and kinetic pressure profiles in inhomogeneous one-dimensional systems of non-interacting fermions, and apply it to harmonically confined systems of up to N=1000 fermions. The method invokes a Green's function operator in coordinate space, which is handled by techniques originally developed for the calculation of the density of single-particle states from Green's functions in the energy domain. In contrast to the Thomas-Fermi (local density) approximation, the exact profiles under harmonic confinement show negative local pressure in the tails and a prominent shell structure which may become accessible to observation in magnetically trapped gases of fermionic alkali atoms.Comment: 8 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Evaporative Cooling of a Two-Component Degenerate Fermi Gas

    Full text link
    We derive a quantum theory of evaporative cooling for a degenerate Fermi gas with two constituents and show that the optimum cooling trajectory is influenced significantly by the quantum statistics of the particles. The cooling efficiency is reduced at low temperatures due to Pauli blocking of available final states in each binary collision event. We compare the theoretical optimum trajectory with experimental data on cooling a quantum degenerate cloud of potassium-40, and show that temperatures as low as 0.3 times the Fermi temperature can now be achieved.Comment: 6 pages, 4 figure
    corecore