17 research outputs found
Predicting CYP3A-mediated midazolam metabolism in critically ill neonates, infants, children and adults with inflammation and organ failure.
Aims: Inflammation and organ failure have been reported to have an impact on cytochrome P450 (CYP) 3A-mediated clearance of midazolam in critically ill children. Our aim was to evaluate a previously developed population pharmacokinetic model both in critically ill children and other populations, in order to allow the model to be used to guide dosing in clinical practice. Methods: The model was evaluated externally in 136 individuals, including (pre)term neonates, infants, children and adults (body weight 0.77â90Â kg, C-reactive protein level 0.1â341Â mg lâ1 and 0â4 failing organs) using graphical and numerical diagnostics. Results: The pharmacokinetic model predicted midazolam clearance and plasma concentrations without bias in postoperative or critically ill paediatric patients and term neonates [median prediction error (MPE) 180%). Conclusion: The recently published pharmacokinetic model for midazolam, quantifying the influence of maturation, inflammation and organ failure in children, yields unbiased clearance predictions and can therefore be used for dosing instructions in term neonates, children and adults with varying levels of critical illness, including healthy adults, but not for extrapolation to preterm neonates
Predicting CYP3A-mediated midazolam metabolism in critically ill neonates, infants, children and adults with inflammation and organ failure
Aims: Inflammation and organ failure have been reported to have an impact on cytochrome P450 (CYP) 3A-mediated clearance of midazolam in critically ill children. Our aim was to evaluate a previously developed population pharmacokinetic model both in critically ill children and other populations, in order to allow the model to be used to guide dosing in clinical practice. Methods: The model was evaluated externally in 136 individuals, including (pre)term neonates, infants, children and adults (body weight 0.77-90 kg, C-reactive protein level 0.1-341 mg l-1 and 0-4 failing organs) using graphical and numerical diagnostics. Results: The pharmacokinetic model predicted midazolam clearance and plasma concentrations without bias in postoperative or critically ill paediatric patients and term neonates [median prediction error (MPE) 180%). Conclusion: The recently published pharmacokinetic model for midazolam, quantifying the influence of maturation, inflammation and organ failure in children, yields unbiased clearance predictions and can therefore be used for dosing instructions in term neonates, children and adults with varying levels of critical illness, including healthy adults, but not for extrapolation to preterm neonates
Population pharmacokinetics and exposure-response analysis of tribendimidine to improve treatment for children with hookworm infection
Tribendimidine has been successful in treating hookworm infections and may serve as an alternative to albendazole should resistance arise. Our aims were to (i) characterize the pharmacokinetics (PK) of tribendimidine's primary metabolite, deacetylated amidantel (dADT), and secondary metabolite, acetylated derivative of amidantel (adADT), in school-aged children and adolescents, (ii) link exposure to efficacy against hookworm, and (iii) evaluate whether tribendimidine pharmacotherapy in children could be further improved. First, a population PK model was developed based on dried-blood-spot samples collected from 155 school-aged children and adolescents with hookworm infections, following tribendimidine doses ranging from 100 to 400 mg. Second, an exposure-response analysis was conducted to link the active metabolite dADT to cure rates (CRs) and egg reduction rates (ERRs). Third, simulations were performed to identify a treatment strategy associated with >90% CRs. A two-compartmental model with transit compartments describing observed delay in absorption adequately described PK data of dADT and adADT. Allometric scaling was included to account for growth and development. The absorption rate was 56% lower with 200-mg tablets than with 50-mg tablets, while the extent of absorption remained unaffected. The identified; E; max; models linking dADT exposure to ERRs and CRs showed shallow curves, as increasing exposure led to marginal efficacy increase. Combination therapy should be considered, as a 12-fold-higher dose would be needed to achieve 95% ERRs and CRs >90% with tribendimidine alone. Further studies are warranted to evaluate safety of higher tribendimidine doses and combination therapies with other anthelmintic agents to improve treatment strategy for children with hookworm infection
Pharmacometric analysis of tribendimidine mono- and combination therapies to achieve high cure rates in patients with hookworm infections
In the treatment of hookworm infections, pharmacotherapy has been only moderately successful and drug resistance is a threat. Therefore, novel treatment options including combination therapies should be considered, in which tribendimidine could play a role. Our aims were to (i) characterize the pharmacokinetics of tribendimidine's metabolites in adolescents receiving tribendimidine monotherapy or in combination with ivermectin or oxantel pamoate, (ii) evaluate possible drug-drug interactions (DDI), (iii) link exposure to response, and (iv) identify a treatment strategy associated with high efficacy, i.e., >90% cure rates (CRs), utilizing model-based simulations. A population pharmacokinetic model was developed for tribendimidine's primary and secondary metabolites, dADT and adADT, in 54 hookworm-positive adolescents, with combination therapy evaluated as a possible covariate. Subsequently, an exposure-response analysis was performed utilizing CRs as response markers. Simulations were performed to identify a treatment strategy to achieve >90% CRs. A two-compartmental model best described metabolite disposition. No pharmacokinetic DDI was identified with ivermectin or oxantel pamoate. All participants receiving tribendimidine plus ivermectin were cured. For the monotherapy arm and the arm including the combination with oxantel pamoate,; E; max; models adequately described the correlation between dADT exposure and probability of being cured, with required exposures to achieve 50% of maximum effect of 39.6 and 15.6 nmol/ml·h, respectively. Based on our simulations, an unrealistically high monotherapy tribendimidine dose would be necessary to achieve CRs of >90%, while combination therapy with ivermectin would meet this desired target product profile. Further clinical studies should be launched to develop this combination for the treatment of hookworm and other helminth infections
Ivermectin dosing strategy to achieve equivalent exposure coverage in children and adults
Ivermectin is a commonly used broad-spectrum antiparasitic drug, yet doses that produce consistent exposure coverage across age have not been characterized, and no data are available in children weighing <Â 15Â kg. First, a population pharmacokinetic model is developed based on data from 200 children and 11 adults, treated with 100-600Â ÎŒg/kg ivermectin. Second, model-based simulations are performed to identify a dosing strategy that achieves equivalent exposure coverage in children and adults. Median (90% confidence interval) clearance of 0.346 (0.12-0.73) L/hour/kg in pre-school-aged (2-5Â years) children is similar to 0.352 (0.17-0.69) L/hour/kg in school-aged (6-12Â years) children but higher than in adults (0.199 (0.10-0.31) L/hour/kg), resulting in significantly lower exposure in children following a 200Â ÎŒg/kg dose. Simulations indicate that a dose increase to 300 and 250Â ÎŒg/kg in children aged 2-5 and 6-12Â years, respectively, will achieve equivalent ivermectin exposure coverage in children and adults
Simultaneous Pharmacokinetic Modeling of Gentamicin, Tobramycin and Vancomycin Clearance from Neonates to Adults: Towards a Semi-Physiological Function for Maturation in Glomerular Filtration
PURPOSE:
Since glomerular filtration rate (GFR) is responsible for the elimination of a large number of water-soluble drugs, the aim of this study was to develop a semi-physiological function for GFR maturation from neonates to adults. METHODS:
In the pharmacokinetic analysis (NONMEM VI) based on data of gentamicin, tobramycin and vancomycin collected in 1,760 patients (age 1 day-18 years, bodyweight 415 g-85 kg), a distinction was made between drug-specific and system-specific information. Since the maturational model for clearance is considered to contain system-specific information on the developmental changes in GFR, one GFR maturational function was derived for all three drugs. RESULTS:
Simultaneous analysis of these three drugs showed that maturation of GFR mediated clearance from preterm neonates to adults was best described by a bodyweight-dependent exponent (BDE) function with an exponent varying from 1.4 in neonates to 1.0 in adults (ClGFRâ=âCldrug*(BW/4 kg)(BDE) with BDEâ=â2.23*BW(-0.065)). Population clearance values (Cldrug) for gentamicin, tobramycin and vancomycin were 0.21, 0.28 and 0.39 L/h for a full term neonate of 4 kg, respectively. DISCUSSION:
Based on an integrated analysis of gentamicin, tobramycin and vancomycin, a semi-physiological function for GFR mediated clearance was derived that can potentially be used to establish evidence based dosing regimens of renally excreted drugs in children
Simultaneous Pharmacokinetic Modeling of Gentamicin, Tobramycin and Vancomycin Clearance from Neonates to Adults: Towards a Semi-Physiological Function for Maturation in Glomerular Filtration
PURPOSE:
Since glomerular filtration rate (GFR) is responsible for the elimination of a large number of water-soluble drugs, the aim of this study was to develop a semi-physiological function for GFR maturation from neonates to adults. METHODS:
In the pharmacokinetic analysis (NONMEM VI) based on data of gentamicin, tobramycin and vancomycin collected in 1,760 patients (age 1 day-18 years, bodyweight 415 g-85 kg), a distinction was made between drug-specific and system-specific information. Since the maturational model for clearance is considered to contain system-specific information on the developmental changes in GFR, one GFR maturational function was derived for all three drugs. RESULTS:
Simultaneous analysis of these three drugs showed that maturation of GFR mediated clearance from preterm neonates to adults was best described by a bodyweight-dependent exponent (BDE) function with an exponent varying from 1.4 in neonates to 1.0 in adults (ClGFRâ=âCldrug*(BW/4 kg)(BDE) with BDEâ=â2.23*BW(-0.065)). Population clearance values (Cldrug) for gentamicin, tobramycin and vancomycin were 0.21, 0.28 and 0.39 L/h for a full term neonate of 4 kg, respectively. DISCUSSION:
Based on an integrated analysis of gentamicin, tobramycin and vancomycin, a semi-physiological function for GFR mediated clearance was derived that can potentially be used to establish evidence based dosing regimens of renally excreted drugs in children
Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: Towards a semi-physiological function for maturation in glomerular function
PURPOSE: Since glomerular filtration rate (GFR) is responsible for the elimination of a large number of water-soluble drugs, the aim of this study was to develop a semi-physiological function for GFR maturation from neonates to adults. METHODS: In the pharmacokinetic analysis (NONMEM VI) based on data of gentamicin, tobramycin and vancomycin collected in 1,760 patients (age 1 dayâ18 years, bodyweight 415 gâ85 kg), a distinction was made between drug-specific and system-specific information. Since the maturational model for clearance is considered to contain system-specific information on the developmental changes in GFR, one GFR maturational function was derived for all three drugs. RESULTS: Simultaneous analysis of these three drugs showed that maturation of GFR mediated clearance from preterm neonates to adults was best described by a bodyweight-dependent exponent (BDE) function with an exponent varying from 1.4 in neonates to 1.0 in adults (Cl(GFR) = Cl(drug)*(BW/4 kg)(BDE) with BDE = 2.23*BW(â0.065)). Population clearance values (Cl(drug)) for gentamicin, tobramycin and vancomycin were 0.21, 0.28 and 0.39 L/h for a full term neonate of 4 kg, respectively. DISCUSSION: Based on an integrated analysis of gentamicin, tobramycin and vancomycin, a semi-physiological function for GFR mediated clearance was derived that can potentially be used to establish evidence based dosing regimens of renally excreted drugs in children