5 research outputs found
A Screening Method Using Pulsed-Power Combined with Infrared Imaging to Detect Pattern Defects in Bulk Metal Foil or Thin Film Resistors
Bulk metal foil and thin film resistors occasionally contain localized defects within the etched resistor pattern. Common defects of this type include in-line constrictions referred to as notches, unremoved resistor material bridges between adjacent pattern lines, and embedded non-conductive particles in the resistor material. Such defects are prone to fracture due to thermomechanical fatigue during powered operation, especially power cycling, resulting in positive resistance change and open circuit failure modes. Common screening methods of optical microscopy, short time overload power tests (e.g., 6.25x rated power for 5 seconds) and burn-in (e.g., 1.5x rated power for 100 hours) are useful, but they are not always effective at removing devices with such defects. An improved method has been developed to screen for localized resistor pattern defects. The method involves the application of brief, high power electrical pulses at a low duty cycle while inspecting the resistor with a high resolution, high speed infrared camera. The following test conditions were found to be suitable for this purpose: 6.25x rated power, 1 to 5 pulses, 50 ms pulse width and 10% duty cycle. During the power pulsing, localized constrictions in the resistor pattern are identifiable as hot spots via the infrared camera. Reject criteria can be established based on observations of hot spots. To assess its effectiveness, a total of two hundred eighty (280) surface mount foil resistors (40 each from 7 different lots) were screened using this infrared technique. The screening identified twenty-nine (29) resistors with significant hot spots in the resistor pattern. All 280 resistors were then subjected to an industry standard 10,000 hour life test at 1x rated power at 70C with power cycled for 90 minutes on and 30 minutes off. During life testing, three resistors exhibited positive resistance change failure mode. All three failures were due to thermomechanical fatigue failure of localized bridge defects at the locations identified via infrared screening. The results of this evaluation illustrate the benefits of the pulsed-power infrared detection screening technique to identify reliability suspect foil or thin film resistors that may escape common screening methods
Interim Results NEPP Evaluation of Automotive Grade Multilayer Ceramic Capacitors (MLCCs)
No abstract availabl
Optical Microscopy Techniques to Inspect for Metallic Whiskers
Metal surface finishes of tin, zinc and cadmium are often applied to electronic components, mechanical hardware and other structures. These finishes sometimes unpredictably may form metal whiskers over periods that can take from hours to months or even many years. The metal whiskers are crystalline structures commonly having uniform cross sectional area along their entire length. Typical whisker dimensions are nominally on the order of only a few microns (um) across while their lengths can extend from a few microns to several millimeters. Metal whiskers pose a reliability hazard to electronic systems primarily as an electrical shorting hazard. The extremely narrow dimensions of metal whiskers can make observation with optical techniques very challenging. The videos herein were compiled to demonstrate the complexities associated with optical microscope inspection of electronic and mechanical components and assemblies for the presence or absence of metal whiskers. The importance of magnification, light source and angle of illumination play critical roles in being able to detect metal whiskers when present. Furthermore, it is demonstrated how improper techniques can easily obscure detection. It is hoped that these videos will improve the probability of detecting metal whiskers with optical inspection techniques
Metal Whiskers: Failure Modes and Mitigation Strategies
Metal coatings especially tin, zinc and cadmium are unpredictably susceptible to the formation of electrically conductive, crystalline filaments referred to as metal whiskers. The use of such coatings in and around electrical systems presents a risk of electrical shorting. Examples of metal whisker formation are shown with emphasis on optical inspection techniques to improve probability of detection. The failure modes (i.e., electrical shorting behavior) associated with metal whiskers are described. Based on an almost 9- year long study, the benefits of polyurethane conformal coat (namely, Arathane 5750) to protect electrical conductors from whisker-induced short circuit anomalies is discussed
COTS Ceramic Chip Capacitors: An Evaluation of the Parts and Assurance Methodologies
Commercial-Off-The-Shelf (COTS) multilayer ceramic chip capacitors (MLCCs) are continually evolving to reduce physical size and increase volumetric efficiency. Designers of high reliability aerospace and military systems are attracted to these attributes of COTS MLCCs and would like to take advantage of them while maintaining the high standards for long-term reliable operation they are accustomed io when selecting military qualified established reliability (MIL-ER) MLCCs. However, MIL-ER MLCCs are not available in the full range of small chip sizes with high capacitance as found in today's COTS MLCCs. The objectives for this evaluation were to assess the long-term performance of small case size COTS MLCCs and to identify effective, lower-cost product assurance methodologies. Fifteen (15) lots of COTS X7R dielectric MLCCs from four (4) different manufacturers and two (2) MIL-ER BX dielectric MLCCs from two (2) of the same manufacturers were evaluated. Both 0805 and 0402 chip sizes were included. Several voltage ratings were tested ranging from a high of 50 volts to a low of 6.3 volts. The evaluation consisted of a comprehensive screening and qualification test program based upon MIL-PRF-55681 (i.e., voltage conditioning, thermal shock, moisture resistance, 2000-hour life test, etc.). In addition, several lot characterization tests were performed including Destructive Physical Analysis (DPA), Highly Accelerated Life Test (HALT) and Dielectric Voltage Breakdown Strength. The data analysis included a comparison of the 2000-hour life test results (used as a metric for long-term performance) relative to the screening and characterization test results. Results of this analysis indicate that the long-term life performance of COTS MLCCs is variable -- some lots perform well, some lots perform poorly. DPA and HALT were found to be promising lot characterization tests to identify substandard COTS MLCC lots prior to conducting more expensive screening and qualification tests. The results indicate that lot- specific screening and qualification are still recommended for high reliability applications. One significant and concerning observation is that MIL- type voltage conditioning (100 hours at twice rated voltage, 125 C) was not an effective screen in removing infant mortality parts for the particular lots of COTS MLCCs evaluated