69 research outputs found

    Somatodendritic secretion in oxytocin neurons is upregulated during the female reproductive cycle

    Get PDF
    During the female reproductive cycle, hypothalamic oxytocin (OT) neurons undergo sharp changes in excitability. In lactating mammals, bursts of electrical activity of OT neurons result in the release of large amounts of OT in the bloodstream, which causes milk ejection. One hypothesis is that OT neurons regulate their own firing activity and that of nearby OT neurons by somatodendritic release of OT. In this study, we show that OT neuron activity strongly reduces inhibitory synaptic transmission to these neurons. This effect is blocked by antagonists of both adenosine and OT receptors and is mimicked by OT application. Inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex formation by tetanus toxin completely blocked the stimulation-induced reduction in inhibitory input, as did the calcium chelator BAPTA. During lactation, the readily releasable pool of secretory vesicles in OT cell bodies was doubled, and calcium currents were upregulated. This resulted in an increased inhibition of GABAergic synaptic transmission by somatodendritic release during lactation compared with the adult virgin stage. These results demonstrate that somatodendritic release is augmented during lactation, which is a novel form of plasticity to change the strength of synaptic transmission

    Genetic contributions to long-range temporal correlations in ongoing oscillations

    Get PDF
    The amplitude fluctuations of ongoing oscillations in the electroencephalographic (EEG) signal of the human brain show autocorrelations that decay slowly and remain significant at time scales up to tens of seconds. We call these long-range temporal correlations (LRTC). Abnormal LRTC have been observed in several brain pathologies, but it has remained unknown whether genetic factors influence the temporal correlation structure of ongoing oscillations. We recorded the ongoing EEG during eyes-closed rest in 390 monozygotic and dizygotic twins and investigated the temporal structure of ongoing oscillations in the alpha- and beta-frequency bands using detrended fluctuation analysis (DFA). The strength of LRTC was more highly correlated in monozygotic than in dizygotic twins. Statistical analysis attributed up to ∼60% of the variance in DFA to genetic factors, indicating a high heritability for the temporal structure of amplitude fluctuations in EEG oscillations. Importantly, the DFA and EEG power were uncorrelated. LRTC in ongoing oscillations are robust, heritable, and independent of power, suggesting that LRTC and oscillation power are governed by distinct biophysical mechanisms and serve different functions in the brain. We propose that the DFA method is an important complement to classical spectral analysis in fundamental and clinical research on ongoing oscillations. Copyright © 2007 Society for Neuroscience

    Конкуренція університетів: світовий досвід і українські реалії

    Get PDF
    Досліджено процеси конкуренції вищих навчальних закладів; обґрунтовано основні критерії формування рейтингів університетів; виявлено взаємозв’язок між високим рейтингом університету і показником його елітності; розкрито значення капіталізації в конкурентних перевагах вищих навчальних закладів; визначено роль елітних університетів у постіндустріальному розвитку суспільства.Исследованы процессы конкуренции высших учебных заведений; обоснованы основные критерии формирования рейтингов университетов; показана взаимосвязь между высоким рейтингом университета и показателем его элитности; раскрыто значение капитализации в конкурентных преимуществах высших учебных заведений; определена роль элитных университетов в постиндустриальном развитии общества.The processes of competition of universities are studi ed, proved the main criteria for the formation of university rankings, found the relationship between highly-rated university and the rate of its elite, disclosed the value of capitalization in the competitive advantages of higher education institutions, and determined the role of elite universities in the post-industrial development

    Giochi da senatori

    Get PDF
    Megalencephalic leucoencephalopathy with subcortical cysts is a genetic brain disorder with onset in early childhood. Affected infants develop macrocephaly within the first year of life, after several years followed by slowly progressive, incapacitating cerebellar ataxia and spasticity. From early on, magnetic resonance imaging shows diffuse signal abnormality and swelling of the cerebral white matter, with evidence of highly increased white matter water content. In most patients, the disease is caused by mutations in the gene MLC1, which encodes a plasma membrane protein almost exclusively expressed in brain and at lower levels in leucocytes. Within the brain, MLC1 is mainly located in astrocyte-astrocyte junctions adjacent to the blood-brain and cereborspinal fluid-brain barriers. Thus far, the function of MLC1 has remained unknown. We tested the hypothesis that MLC1 mutations cause a defect in ion currents involved in water and ion homeostasis, resulting in cerebral white matter oedema. Using whole-cell patch clamp studies we demonstrated an association between MLC1 expression and anion channel activity in different cell types, most importantly astrocytes. The currents were absent in chloride-free medium and in cells with disease-causing MLC1 mutations. MLC1-dependent currents were greatly enhanced by hypotonic pretreatment causing cell swelling, while ion channel blockers, including Tamoxifen, abolished the currents. Down regulation of endogenous MLC1 expression in astrocytes by small interfering RNA greatly reduced the activity of this channel, which was rescued by overexpression of normal MLC1. The current-voltage relationship and the pharmacological profiles of the currents indicated that the channel activated by MLC1 expression is a volume-regulated anion channel. Such channels are involved in regulatory volume decrease. We showed that regulatory volume decrease was hampered in lymphoblasts from patients with megalencephalic leucoencephalopathy. A similar trend was observed in astrocytes with decreased MLC1 expression; this effect was rescued by overexpression of normal MLC1. In the present study, we show that absence or mutations of the MLC1 protein negatively impact both volume-regulated anion channel activity and regulatory volume decrease, indicating that megalencephalic leucoencephalopathy is caused by a disturbance of cell volume regulation mediated by chloride transport. © 2011 The Author
    corecore