4 research outputs found

    A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study

    Get PDF
    SummaryBackground The risk of tuberculosis outbreaks among people fleeing hardship for refuge in Europe is heightened. We describe the cross-border European response to an outbreak of multidrug-resistant tuberculosis among patients from the Horn of Africa and Sudan. Methods On April 29 and May 30, 2016, the Swiss and German National Mycobacterial Reference Laboratories independently triggered an outbreak investigation after four patients were diagnosed with multidrug-resistant tuberculosis. In this molecular epidemiological study, we prospectively defined outbreak cases with 24-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) profiles; phenotypic resistance to isoniazid, rifampicin, ethambutol, pyrazinamide, and capreomycin; and corresponding drug resistance mutations. We whole-genome sequenced all Mycobacterium tuberculosis isolates and clustered them using a threshold of five single nucleotide polymorphisms (SNPs). We collated epidemiological data from host countries from the European Centre for Disease Prevention and Control. Findings Between Feb 12, 2016, and April 19, 2017, 29 patients were diagnosed with multidrug-resistant tuberculosis in seven European countries. All originated from the Horn of Africa or Sudan, with all isolates two SNPs or fewer apart. 22 (76%) patients reported their travel routes, with clear spatiotemporal overlap between routes. We identified a further 29 MIRU-VNTR-linked cases from the Horn of Africa that predated the outbreak, but all were more than five SNPs from the outbreak. However all 58 isolates shared a capreomycin resistance-associated tlyA mutation. Interpretation Our data suggest that source cases are linked to an M tuberculosis clone circulating in northern Somalia or Djibouti and that transmission probably occurred en route before arrival in Europe. We hypothesise that the shared mutation of tlyA is a drug resistance mutation and phylogenetic marker, the first of its kind in M tuberculosis sensu stricto. Funding The Swiss Federal Office of Public Health, the University of Zurich, the Wellcome Trust, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), the Medical Research Council, BELTA-TBnet, the European Union, the German Center for Infection Research, and Leibniz Science Campus Evolutionary Medicine of the Lung (EvoLUNG)

    Systemic Resilience to Cross-border Infectious Disease Threat Events in Europe

    No full text
    Recurrent health emergencies threaten global health security. International Health Regulations (IHR) aim to prevent, detect and respond to such threats, through increase in national public health core capacities, but whether IHR core capacity implementation is necessary and sufficient has been contested. With a longitudinal study we relate changes in national IHR core capacities to changes in cross‐border infectious disease threat events (IDTE) between 2010 and 2016, collected through epidemic intelligence at the European Centre for Disease Prevention and Control (ECDC). By combining all IHR core capacities into one composite measure we found that a 10% increase in the mean of this composite IHR core capacity to be associated with a 19% decrease (p=0.017) in the incidence of cross‐border IDTE in the EU. With respect to specific IHR core capacities, an individual increase in national legislation, policy & financing; coordination and communication with relevant sectors; surveillance; response; preparedness; risk communication; human resource capacity; or laboratory capacity was associated with a significant decrease in cross‐border IDTE incidence. In contrast, our analysis showed that IHR core capacities relating to point‐of‐entry, zoonotic events or food safety were not associated with IDTE in the EU. Due to high internal correlations between core capacities, we conducted a principal component analysis which confirmed a 20% decrease in risk of IDTE for every 10% increase in the core capacity score (95% CI: 0.73, 0.88). Globally (EU excluded), a 10% increase in the mean of all IHR core capacities combined was associated with a 14% decrease (p=0.077) in cross‐border IDTE incidence. We provide quantitative evidence that improvements in IHR core capacities at country‐level are associated with fewer cross‐border IDTE in the EU, which may also hold true for other parts of the world

    Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting.

    No full text
    International audiencePathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease
    corecore