22 research outputs found

    Lessons Learned in Applying the U.S. EPA Proposed Cancer Guidelines to Specific Compounds

    Get PDF
    An expert panel was convened to evaluate the U.S. Environmental Protection Agency’s “Proposed Guidelines for Carcinogen Risk Assessment” through their application to data sets for chloroform (CHCl3) and dichloroacetic acid (DCA). The panel also commented on perceived strengths and limitations encountered in applying the guidelines to these specific compounds. This latter aspect of the panel’s activities is the focus of this perspective. The panel was very enthusiastic about the evolution of these proposed guidelines, which represent a major step forward from earlier EPA guidance on cancer-risk assessment. These new guidelines provide the latitude to consider diverse scientific data and allow considerable flexibility in dose-response assessments, depending on the chemical’s mode of action. They serve as a very useful template for incorporating state-of-the-art science into carcinogen risk assessments. In addition, the new guidelines promote harmonization of methodologies for cancer- and noncancer-risk assessments. While new guidance on the qualitative decisions ensuing from the determination of mode of action is relatively straightforward, the description of the quantitative implementation of various risk-assessment options requires additional development. Specific areas needing clarification include: (1) the decision criteria for judging the adequacy of the weight of evidence for any particular mode of action; (2) the role of mode of action in guiding development of toxicokinetic, biologically based or case-specific models; (3) the manner in which mode of action and other technical considerations provide guidance on margin-of-exposure calculations; (4) the relative roles of the risk manager versus the risk assessor in evaluating the margin of exposure; and (5 ) the influence of mode of action in harmonizing cancer and noncancer risk assessment methodologies. These points are elaborated as recommendations for improvements to any revisions. In general, the incorporation of examples of quantitative assessments for specific chemicals would strengthen the guidelines. Clearly, any revisions should retain the emphasis present in these draft guidelines on flexibility in the use of scientific information with individual compounds, while simultaneously improving the description of the processes by which these mode-of-action data are organized and interpreted

    Atrazine and Breast Cancer: A Framework Assessment of the Toxicological and Epidemiological Evidence

    Get PDF
    The causal relationship between atrazine exposure and the occurrence of breast cancer in women was evaluated using the framework developed by Adami et al. (2011) wherein biological plausibility and epidemiological evidence were combined to conclude that a causal relationship between atrazine exposure and breast cancer is “unlikely”. Carcinogenicity studies in female Sprague-Dawley (SD) but not Fischer-344 rats indicate that high doses of atrazine caused a decreased latency and an increased incidence of combined adenocarcinoma and fibroadenoma mammary tumors. There were no effects of atrazine on any other tumor type in male or female SD or Fischer-344 rats or in three strains of mice. Seven key events that precede tumor expression in female SD rats were identified. Atrazine induces mammary tumors in aging female SD rats by suppressing the luteinizing hormone surge, thereby supporting a state of persistent estrus and prolonged exposure to endogenous estrogen and prolactin. This endocrine mode of action has low biological plausibility for women because women who undergo reproductive senescence have low rather than elevated levels of estrogen and prolactin. Four alternative modes of action (genotoxicity, estrogenicity, upregulation of aromatase gene expression or delayed mammary gland development) were considered and none could account for the tumor response in SD rats. Epidemiological studies provide no support for a causal relationship between atrazine exposure and breast cancer. This conclusion is consistent with International Agency for Research on Cancer’s classification of atrazine as “unclassifiable as to carcinogenicity” and the United States Environmental Protection Agency's classification of atrazine as “not likely to be carcinogenic.

    Genotoxicity under extreme culture conditions

    No full text

    Letter to the Editor

    No full text

    Genotoxicity Expert Panel review: weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid

    No full text
    <p>In 2015, the International Agency for Research on Cancer (IARC) published a monograph concluding there was strong evidence for genotoxicity of glyphosate and glyphosate formulations and moderate evidence for genotoxicity of the metabolite aminomethylphosphonic acid (AMPA). These conclusions contradicted earlier extensive reviews supporting the lack of genotoxicity of glyphosate and glyphosate formulations. The IARC Monograph concluded there was strong evidence of induction of oxidative stress by glyphosate, glyphosate formulations, and AMPA. The Expert Panel reviewed the genotoxicity and oxidative stress data considered in the IARC Monograph, together with other available data not considered by IARC. The Expert Panel defined and used a weight of evidence (WoE) approach that included ranking of studies and endpoints by the strength of their linkage to events associated with carcinogenic mechanisms. Importantly, the Expert Panel concluded that there was sufficient information available from a very large number of regulatory genotoxicity studies that should have been considered by IARC. The WoE approach, the inclusion of all relevant regulatory studies, and some differences in interpretation of individual studies led to significantly different conclusions by the Expert Panel compared with the IARC Monograph. The Expert Panel concluded that glyphosate, glyphosate formulations, and AMPA do not pose a genotoxic hazard and the data do not support the IARC Monograph genotoxicity evaluation. With respect to carcinogenicity classification and mechanism, the Expert Panel concluded that evidence relating to an oxidative stress mechanism of carcinogenicity was largely unconvincing and that the data profiles were not consistent with the characteristics of genotoxic carcinogens.</p
    corecore