89 research outputs found
Electrical Stimulation to Conductive Scaffold Promotes Axonal Regeneration and Remyelination in a Rat Model of Large Nerve Defect
BACKGROUND: Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. METHODOLOGY/FINDINGS: In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. CONCLUSIONS/SIGNIFICANCE: Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect
C3 Peptide Promotes Axonal Regeneration and Functional Motor Recovery after Peripheral Nerve Injury
Peripheral nerve injuries are frequently seen in trauma patients and due to delayed nerve repair, lifelong disabilities often follow this type of injury. Innovative therapies are needed to facilitate and expedite peripheral nerve regeneration. The purpose of this study was to determine the effects of a 1-time topical application of a 26-amino-acid fragment (C3156-181), derived from the Clostridium botulinum C3-exoenzyme, on peripheral nerve regeneration in 2 models of nerve injury and repair in adult rats. After sciatic nerve crush, different dosages of C3156-181 dissolved in buffer or reference solutions (nerve growth factor or C3bot-wild-type protein) or vehicle-only were injected through an epineurial opening into the lesion sites. After 10-mm nerve autotransplantation, either 8.0 nmol/kg C3156-181 or vehicle were injected into the proximal and distal suture sites. For a period of 3 to 10 postoperative weeks, C3156-181-treated animals showed a faster motor recovery than control animals. After crush injury, axonal outgrowth and elongation were activated and consequently resulted in faster motor recovery. The nerve autotransplantation model further elucidated that C3156-181 treatment accounts for better axonal elongation into motor targets and reduced axonal sprouting, which are followed by enhanced axonal maturation and better axonal functionality. The effects of C3156-181 are likely caused by a nonenzymatic down-regulation of active RhoA. Our results indicate the potential of C3156-181 as a therapeutic agent for the topical treatment of peripheral nerve repair sites
Estudo da regeneração de nervos tibiais de ratos Wistar em sutura primária com "gap" e sem "gap", cobertos por segmentos de veia
OBJECTIVE: This study compared nerve regeneration in Wistar rats, using epineural neurorrhaphy with a gap of 1.0 mm and without a gap, both wrapped with jugular vein tubes. Motor neurons in the spinal cord between L3 and S1 were used for the count, marked by exposure of the tibial nerve to Fluoro-Gold (FG). METHOD: The tibial nerves on both sides were cut and sutured, with a gap on one side and no gap in the other. The sutures were wrapped with a jugular vein. Four months after surgery the tibial nerves were exposed to Fluoro-Gold and the motor neuron count performed in the spinal cord. RESULTS: The results were statistically analyzed by the paired Wilcoxon test. There was a statistical difference between the groups with and without gap in relation to the motor neuron count (p=0.013). CONCLUSION: The epineural neurorraphy without gap wrapped with jugular vein showed better results for nerve regeneration than the same procedure with gap. Level of Evidence: Experimental Study
: Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression
Brief electrical stimulation enhances the regenerative ability of axotomized motor [Nix, W.A., Hopf, H.C., 1983. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 272, 21-25; Al-Majed, A.A., Neumann, C.M., Brushart, T.M., Gordon, T., 2000. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20, 2602-2608] and sensory [Brushart, T. M., Jari, R., Verge, V, Rohde, C., Gordon, T., 2005. Electrical stimulation restores the specificity of sensory axon regeneration. Exp. Neurol. 194, 221-229] neurons. Here we examined the parameter of duration of stimulation on regenerative capacity, including the intrinsic growth programs, of sensory neurons. The effect of 20 Hz continuous electrical stimulation on the number of DRG sensory neurons that regenerate their axons was evaluated following transection and surgical repair of the femoral nerve trunk. Stimulation was applied proximal to the repair site for 1 h, 3 h, 1 day, 7 days or 14 days at the time of nerve repair. Following a 21-day regeneration period, DRG neurons that regenerated axons into'the muscle and cutaneous sensory nerve branches were retrogradely identified. Stimulation of 1 h led to a significant increase in DRG neurons regenerating into cutaneous and muscle branches when compared to 0 h (sham) stimulation or longer periods of stimulation. Stimulation for 1 h also significantly increased the numbers of neurons that regenerated axons beyond the repair site 4 days after lesion and was correlated with a significant increase in expression of growth-associated protein 43 (GAP-43) mRNA in the regenerating neurons at 2 days post-repair. An additional indicator of heightened plasticity following 1 h stimulation was elevated expression of brain-derived neurotrophic factor (BDNF). The effect of brief stimulation on enhancing sensory and motoneuron regeneration holds promise for inducing improved peripheral nerve repair in the clinical setting. (c) 2007 Elsevier hic. All rights reserved
- …