175 research outputs found

    Modeling estuarine response to load reductions in a warmer climate: York River Estuary, Virginia, USA

    Get PDF
    The impact of climate warming on shallow tributary estuaries will be influenced by the complex cycling of nutrients and organic matter, diversity of primary producers, and enhanced benthic-pelagic coupling typical of these systems, along with advection of nutrients, organic matter, and hypoxic water from adjacent systems. This study utilized a parsimonious, reduced-complexity model that combines mechanistic equations with robust, data-driven, empirical formulations to predict how phytoplankton net primary production (NPP), net ecosystem metabolism (NEM), and hypoxia will change under a range of warmer conditions in the York River Estuary, VA, USA, a sub-estuary of Chesapeake Bay. Modeled NPP peaked earlier and responded positively to warming in the winter and spring throughout most of the system due to increased rates of nutrient remineralization; NPP remained elevated during summer and fall in the upper estuary under warming but decreased in the lower estuary. These changes caused the upper estuary to become more autotrophic, while NEM decreased in the lower estuary due to greater stimulation of respiration relative to NPP. Warming increased the predicted temporal and spatial extent of hypoxia, with the upper estuary experiencing a relatively constant increase in the number of hypoxic days with increasing temperature. Hypoxia in the lower estuary increased more rapidly with temperature. Offsetting this increase in hypoxia with climate warming will require additional nutrient and organic matter load reductions from the surrounding watershed and Chesapeake Bay in order to achieve the same level of improvement predicted in the absence of a warming climate

    Winter Site Fidelity of Orange-Crowned Warblers (Oreothlypis celata) in the Lower Rio Grande Valley of Texas

    Get PDF
    Abstract—We documented between-winter site fidelity of orange-crowned warblers (Oreothlypis celata) in the Lower Rio Grande Valley of Texas, between 2004 and 2017. Overall, we recaptured 13.9% of the 201 banded birds in ‡1 subsequent winter season: 20.8% of the 101 birds banded in urban natural areas, and 7.0% of the 100 banded in rural areas. We recaptured 8 birds ‡3 winters after their initial capture, indicating extended winter site fidelity. Resumen—Documentamos la fidelidad al sitio invernal de los chipes olivaceos (Oreothlypis celata) en el Valle del R´ıo Grande Baja de Texas entre 2004 y 2017. En general, se recaptur ´o el 13.9% de los 201 individuos anillados en al menos una temporada invernal posterior: el 20.8% de los 101 individuos anillados en las areas urbanas naturales, y el 7.0% de los 100 anillados en el ´area rural natural. Recapturamos 8 aves tres o m´as inviernos después de su captura inicial, lo que indica la fidelidad prolongada al sitio invernal

    Subspecific and breeding status of the Common Yellowthroat (Geothlypis trichas) at Santa Ana National Wildlife Refuge, Hidalgo County, Texas

    Get PDF
    ABSTRACT—We confirmed the breeding of the Common Yellowthroat (Geothlypis trichas) during 2008–2015 at Santa Ana National Wildlife Refuge and presented measurement evidence that individuals belong to the Brownsville Common Yellowthroat, Geothlypis trichas insperata. This expands the known breeding distribution for this rare and local subspecies. RESUMEN—Se confirm´o la reproducci´on de la mascarita com´un (Geothlypis trichas) durante 2008-2015 en Santa Ana National Wildlife Refuge y se presentaron pruebas de medici ´on que indican que los individuos pertenecen a la subespecie de mascarita com´un, Geothlypis trichas insperata. Esta informaci´on expande la distribuci´on de reproducci´on conocida de esta subespecie rara y local

    Direct measurements of light attenuation by epiphytes on eelgrass \u3cem\u3eZostera marina\u3c/em\u3e

    Get PDF
    Declines in the seagrass Zostera marina L. in estuaries and lagoons have been attributed in part to reductions in irradiance reaching the seagrass blades. Epiphytes growing on Z. marina have the potential to attenuate a large fraction of the light that would otherwise reach the blades. This problem has previously been studied by measuring light penetration through homogenized epiphytic slurries or through glass slides fouled with epiphytes. However, the latter may not represent the natural succession or species composition found on live Z. marina leaves and the former does not preserve the structure of the epiphytic complex. Further, past studies have not measured attenuation across the full range of epiphytic densities found in the field. In this study, we measured light penetration across a wide range of epiphytic densities by holding scraped and unscraped Z. marina blades over a submerged light sensor. Results compared well with past studies at low epiphyte densities, with strong reductions in light penetration as density increased. However, at higher densities, penetration leveled off to a relatively constant value as the epiphytes floated out from the edges of the blade. Studies using slurries did not capture this phenomenon and thus predicted decreasing penetration down to 0%

    Modeling the Effect of Hypoxia on Macrobenthos Production in the Lower Rappahannock River, Chesapeake Bay, USA

    Get PDF
    Hypoxia in Chesapeake Bay has substantially increased in recent decades, with detrimental effects on macrobenthic production; the production of these fauna link energy transfer from primary consumers to epibenthic and demersal predators. As such, the development of accurate predictive models that determine the impact of hypoxia on macrobenthic production is important. A continuous-time, biomass-based model was developed for the lower Rappahannock River, a Bay tributary prone to seasonal hypoxia. Phytoplankton, zooplankton, and macrobenthic state variables were modeled, with a focus on quantitatively constraining the effect of hypoxia on macrobenthic biomass. This was accomplished through regression with Z\u27: a sigmoidal function between macrobenthic biomass and dissolved oxygen concentration, derived using macrobenthic data collected from the Rappahannock River during the summers of 2007 and 2008, and applied to compute hypoxia-induced mortality as a rate process. The model was verified using independent monitoring data collected by the Chesapeake Bay Program. Simulations showed that macrobenthic biomass was strongly linked to dissolved oxygen concentrations, with fluctuations in biomass related to the duration and severity of hypoxia. Our model demonstrated that hypoxia negatively affected macrobenthic biomass, as longer durations of hypoxia and greater hypoxic severity resulted in an increasing loss in biomass. This exercise represents an important contribution to modeling anthropogenically impacted coastal ecosystems, by providing an empirically constrained relationship between hypoxia and macrobenthic biomass, and applying that empirical relationship in a mechanistic model to quantify the effect of the severity, duration, and frequency of hypoxia on benthic biomass dynamics

    Impacts of Harmful Algal Blooms on Dissolved Organic Carbon in the Lower York River Estuary

    Get PDF
    Estuaries are important sites of carbon cycling; however, the impact of increasingly prevalent harmful algal blooms (HABs) on cycling in these systems remains unclear. To examine the impact of two bloom species, Alexandrium monilatum and Margalefidinium polykrikoides on the quantity and composition of the dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) pools and rates of benthic and pelagic microbial respiration in the lower York River Estuary, VA, a series field samplings and laboratory incubations were performed. The two HAB species greatly increased the size of the DOC and CDOM pools and altered the character of the CDOM pool, causing it to shift towards higher molecular weights and lower levels of aromaticity. DOC released by A. monilatum and M. polykrikoides both stimulated increased respiration by pelagic microbes, but displayed different levels of microbial lability in the DOC produced suggesting species level differences in how HABs affect DOC cycling. HAB produced organic matter did not stimulate increased levels of benthic microbial respiration as measured in sediment core incubations, suggesting that benthic microbial communities are not carbon limited. These findings show that HABs alter the quality and quantity of the DOC pool which in turn affects pelagic microbial respiration. This study also highlighted the need for species level analysis of HABs to be factored in to future estuarine carbon budgets in HAB affected systems

    An updated model for estimating the TMDL-related benefits of oyster reef restoration Harris Creek, Maryland, USA

    Get PDF
    In 2014, a user-friendly, web-accessible model was developed that allowed restoration practitioners and resource managers to easily estimate the TMDLrelated benefits of oyster reef (Crassostrea virginica) restoration per unit area, run restoration scenarios in Harris Creek, MD to optimize restoration planning and implementation, and calculate the benefits of the chosen plan. The model was rooted in scientifically defensible data and was readily transferrable to systems throughout the Chesapeake Bay and Eastern Shore. The model operated in five vertically well-mixed boxes along the main axis of the creek. Exchanges among creeks were computed using a tidal prism approach and were compared to exchanges provided from a high resolution 3D hydrodynamic model. Watershed inputs for the model were obtained for the Harris Creek sub-watershed from the Phase V Chesapeake Bay Program Watershed Model. The base model simulated daily concentrations over an annual cycle of chlorophyll-a, dissolved inorganic nitrogen (N) and phosphorus (P), dissolved oxygen, total suspended solids, the biomass of benthic microalgae, and the water column and sediment pools of labile organic carbon (C) and associated N and P. Water quality data for model forcing and calibration were obtained from the Chesapeake Bay Program, the Choptank Riverkeeper, the University of Maryland Center for Environmental Science, and the Maryland Department of Natural Resources. An oyster sub-model was coupled to this base model to compute the volume of water filtered, removal of phytoplankton, suspended solids, and associated nutrients via filtration, recycling of nutrients and consumption of oxygen by oyster respiration, production of feces, N and P accumulation in oyster tissues and shell, oyster-enhanced denitrification, and N and P burial associated with restored reefs. The completed model was served online and operated through a web browser, enabling users to conduct scenario analysis by entering box-specific values for acres restored, restored oyster density, and restored oyster size, as well as the economic value of associated N and P removal. The updated model incorporates all aspects of the previous model but replaces oyster related data collected outside Harris Creek with site-specific data, and now includes restored oyster populations and water quality data through 2016. It also incorporates the impacts of two common, reef-associated filter feeding organisms: the hooked mussel Ischadium recurvum and the sea squirt Molgula manhattensis. Additional data collected in Harris Creek and incorporated into the model include: biomass of benthic microalgae, biogeochemical fluxes in relation to oyster biomass, and the biomass density and distribution of the dominant non-oyster reef filter feeders (I. recurvum, and M. manhattensis). The revised model incorporates an improved estimate of annual oyster growth, uses an improved method for estimating N and P sequestered in tissues and shells, and accounts for the prerestoration oyster population in Harris Creek. The model also incorporates data on the filtration capacity of I. recurvum and M. manhattensis in relation to C. virginica collected as part of a previous study (not in Harris Creek) by Kellogg and Newell (unpublished data)

    Comparison of surface chlorophyll, primary production, and satellite imagery in hydrographically different sounds off southern New England

    Get PDF
    Block Island Sound (BIS) and Rhode Island Sound (RIS) are adjacent inner continental shelf ecosystems with contrasting hydrographic regimes. BIS exhibits more energetic tidal mixing, and water column stratification remains weak but persists year-round due to nearby estuarine exchange flow; RIS is less influenced by estuaries, and more seasonal with strong stratification in summer. We compared annual cycles of phytoplankton biomass and primary production in BIS and RIS using measurements (surface chlorophyll, 14C primary production), primary production models (Webb/Platt and BZE models), and satellite ocean color products. During 22 mo of sampling, measured surface chlorophyll was not significantly different between BIS (mean = 1.86 mg m-3) and RIS (1.69 mg m-3), and bimodal peaks of phytoplankton biomass and production occurred concurrently in both Sounds. In contrast, a 12 yr ocean-color based chlorophyll time series indicated higher long-term average surface chlorophyll in the more well-mixed system (BIS, mean = 1.50 mg m-3; RIS, mean = 0.86 mg m-3). BIS annual primary production (318 to 329 g C m-2 yr-1) was higher than RIS (239 to 256 g C m-2 yr-1; p \u3c 0.001). These differences were most apparent during the summer, concurrent with the largest differences in water column stratification. Phytoplankton bloom phenology was driven by physical processes, with chlorophyll significantly related to water column stratification (r = -0.51, p = 0.01), depth of the euphotic zone (r = -0.54, p = 0.05), and surface water salinity (r = 0.54, p = 0.04). Primary production was correlated with surface water temperature (r = 0.57, p = 0.03) but the mechanisms underlying production differences between the Sounds remain unresolved. We hypothesize that different hydrographies give rise to different productivity between the Sounds

    A model for estimating the TMDL-related benefits of oyster reef restoration : Harris Creek, Maryland, USA

    Get PDF
    A user-friendly, web-accessible model has been developed that allows restoration practitioners and resource managers to easily estimate the TMDL-related benefits of oyster reef restoration per unit area, run restoration scenarios in Harris Creek, MD to optimize restoration planning and implementation, and calculate the benefits of the chosen plan. The model is rooted in scientifically defensible data and is readily transferable to systems throughout the Chesapeake Bay and Eastern Shore. The model operates in five vertically well-mixed boxes along the main axis of the creek. Exchanges among creeks are computed using a tidal prism approach and were compared to exchanges provided from a high resolution 3D hydrodynamic model. Watershed inputs for the model were obtained for the Harris Creek sub-watershed from the Phase V Chesapeake Bay Program Watershed Model. The base model simulates daily concentrations over an annual cycle of chlorophyll-a, dissolved inorganic nitrogen (N) and phosphorus (P), dissolved oxygen, total suspended solids, the biomass of benthic microalgae, and the water column and sediment pools of labile organic carbon (C) and associated N and P. Water quality data for model forcing and calibration were obtained from the Chesapeake Bay Program, the Choptank Riverkeeper, the University of Maryland Center for Environmental Science, and the Maryland Department of Natural Resources. An oyster sub-model has been coupled to this base model and computes the volume of water filtered, removal of phytoplankton, suspended solids, and associated nutrients via filtration, recycling of nutrients and consumption of oxygen by oyster respiration, production of feces, N and P accumulation in oyster tissues and shell, oyster-enhanced denitrification, and N and P burial associated with restored reefs. The completed model is served online and operates through a web browser, enabling users to conduct scenario analysis by entering box-specific values for acres restored, restored oyster density, and restored oyster size, as well as the economic value of associated N and P removal

    Reconstructing primary production in a changing estuary: A mass balance modeling approach

    Get PDF
    Estuarine primary production (PP) is a critical rate process for understanding ecosystem function and response to environmental change. PP is fundamentally linked to estuarine eutrophication, and as such should respond to ongoing efforts to reduce nutrient inputs to estuaries globally. However, concurrent changes including warming, altered hydrology, reduced input of sediments, and emergence of harmful algal blooms (HABs) could interact with nutrient management to produce unexpected changes in PP. Despite its fundamental importance, estuarine PP is rarely measured. We reconstructed PP in the York River Estuary with a novel mass balance model based on dissolved inorganic nitrogen (DIN) for the period 1994–2018. Modeled PP compared well to previous estimates and demonstrated a long-term increase and down-estuary shift over the study period. This increase occurred despite reductions in discharge, flushing time, DIN loading, and DIN standing stock over the same period. Increased PP corresponded to increased water temperature, decreased turbidity and light attenuation, and increased photic depth and assimilation ratio, suggesting that phytoplankton in the York River Estuary have become more efficient at converting nutrients into biomass primarily due to a release from light limitation. The increase in PP also coincided with the increasing occurrence of late summer HABs in the lower York River Estuary, including the emergence of a second bloom-forming dinoflagellate in 2007. Results demonstrate how changes concurrent with nutrient management could alter expected system responses and illustrate the utility of the mass balance approach for estimating critical rate processes like PP in the absence of observations
    • …
    corecore