Modeling estuarine response to load reductions in a warmer climate: York River Estuary, Virginia, USA

Samuel J. Lake*, Mark J. Brush

*Corresponding author: sjlake@vims.edu

Marine Ecology Progress Series 538: 81–98 (2015)

Table S1. Primary equations from the reduced complexity ecosystem model. See Table S2 for definitions. Full details can be found in Lake & Brush (2015).

Primary Model Equations

Phytoplankton Biomass and Production¹

$$NPP_{d} = [b_{BZI} + m_{BZI}(BZ_{p}I_{0})] \cdot 10^{-3}$$

$$m_{BZI} = [0.76 \cdot e^{0.051 \cdot T - 15}]$$

$$NPP_{d}^{*} = NPP_{d} \cdot \frac{pNPP_{d}}{100}$$

Pelagic Respiration²

$$R_{WC} = PHY_{10} \cdot R_{WC_0} \cdot e^{R_{WC_k} \cdot T}$$

Carbon Deposition and Sediment Fluxes²

$$NPP_{SED}^* = \int NPP_{SED} \cdot NPP_d^*$$
 $R_{SED} = SED_C \cdot R_{SED_0} \cdot e^{(R_{SED}_k \cdot T)}$
 $\rho N_{den} = N_{den_0} \cdot e^{(0.0693 \cdot T)}$
 $DENIT_{EFF} = 0.4 + (0.0518 \cdot O_2)$
 $DIP_{Hypoxic-Flux} = 0.0286 \cdot e^{(-0.6271 \cdot O_2)}$

Oxygen

$$\begin{aligned} O_2 &= O_{2\,prod} + O_{2\,resp} + O_{2\,exch} + O_{2\,diff} \\ O_{2\,prod} &= O_{2\,NPP\,_{PHY}} + O_{2\,GPP_{MPB}} \\ O_{2\,resp} &= O_{2\,R_{WC}} + O_{2\,R_{MPB}} + O_{2\,R_{SED}} + O_{2\,R_{OC}} \\ O_{2\,diff} &= k_{O_2} \left(O_2^{eq} - O_{2\,avil} \right) \\ k_{O_2} &= e^{(1.09 + 0.29 \cdot W)} \cdot \left(\frac{24}{100} \right) \end{aligned}$$

¹Production is converted to oxygen using a photosynthetic quotient (PQ) of 1, and N and P demand is computed using molar ratios of 106:16 (C:N) and 106:1 (C:P). Rates are prorated when nutrients are limiting.

²Respiratory rate is converted into an oxygen demand using a respiratory quotient (RQ) of 1. N and P are remineralized stoichiometrically using the C:N and C:P ratios listed above. Rates are limited by the available supply of oxygen.

Table S2. Parameters, terms, and constants for the equations included in Table S1.

Parameter	Definition	Unit	
Phytoplankton Biomass and Production			
NPP_d	Potential daytime phytoplankton net production	$g C m^{-2} d^{-1}$	
b_{BZI}	y-intercept		
m_{BZI}	Slope of BZI equation (modeled as a function of temperature)		
B	Chlorophyll-a biomass	mg m ⁻³	
Z_p	Photic depth	m	
I_o	Incident irradiance	$E m^{-2} d^{-1}$	
T	Temperature	°C	
$\mathit{NPP_d}^*$	Realized NPP	$g C m^{-2} d^{-1}$	
$pNPP_d$	(production rate is prorated when nutrients are limiting) Depth corrected fraction of NPP_d (based on Brawley et al. 2003)		
Pelagic Respiration			
R_{WC}	Water column respiration	$g C m^{-2} d^{-1}$	
PHY_{10}	10-day moving average of predicted phytoplankton biomass	$g m^{-2}$	
R_{WC_k}	Temperature-respiration exponent reported in Smith & Kemp (1995)	°C ⁻¹	
	(boxes $1\&2 = 0.05$, boxes $3-8 = 0.071$ and 0.104 for surf and		
R_{WC_0}	bottom, respectively) 0°C value (0.025)	d ⁻¹	
Carbon Deposition	n		
NPP_{SED}^{*}	Daily phytoplankton production to the sediments	$g C m^{-2} d^{-1}$	
NPP_d^{*}	Realized NPP	$g C m^{-2} d^{-1}$	
$\int NPP_{SED}$	Fraction of NPP_d^* deposited to and respired in the sediments (25%)		
R_{SED}	Respiration of the sediment carbon pool	$g C m^{-2} d^{-1}$	
SED_C	Sediment carbon pool	g C m ⁻²	
R_{SED_0}	0° C value (boxes 1-3 = 0.05, boxes 4-8 = 0.025)	d^{-1}	
R_{SED_k}	Temperature-respiration exponent $(0.08 \text{ for all boxes, except bottom layers of boxes } 4-8 = 0.06)$	°C ⁻¹	
Sediment Fluxes			
$ ho N_{_{den}}$	Potential loss of nitrogen to denitrification	$g N m^{-2} d^{-1}$	
N_{den_0}	0°C value (0.01)		
$DENIT_{EFF}$	Denitrification efficiency		
O_2	Dissolved oxygen concentration	$mg O_2 l^{-1}$	
$DIP_{HYPOXIC-FLUX}$	Increase in sediment DIP fluxes over baseline normoxic rates	g P m ⁻²	

Parameter	Definition	Unit
Oxygen		
O_2	Dissolved oxygen concentration	$g O_2 m^{-2} d^{-1}$
$O_{2\ prod}$	Photosynthetic production of oxygen	$g O_2 m^{-2} d^{-1}$
$O_{\scriptscriptstyle 2\mathit{NPP}_{\mathit{PHY}}}$	Phytoplankton production of oxygen $(PQ = 1)$	$g O_2 m^{-2} d^{-1}$
$O_{2\ exch}$	Exchange of oxygen between spatial elements	$g O_2 m^{-2} d^{-1}$
$O_{2\ diff}$	Rate of oxygen diffusion	$g O_2 m^{-2} d^{-1}$
$O_{\scriptscriptstyle 2GPP_{\scriptscriptstyle MPB}}$	Microphytobenthic production of oxygen $(PQ = 1)$	$g O_2 m^{-2} d^{-1}$
$O_{2\ resp}$	Total respiratory consumption of oxygen	$g O_2 m^{-2} d^{-1}$
$O_{2R_{WC}}$	Water column consumption of oxygen $(RQ = 1)$	$g O_2 m^{-2} d^{-1}$
$O_{\scriptscriptstyle 2R_{MPB}}$	Microphytobenthos consumption of oxygen $(RQ = 1)$	$g O_2 m^{-2} d^{-1}$
$O_{2R_{SED}}$	Sediment consumption of oxygen $(RQ = 1)$	$g O_2 m^{-2} d^{-1}$
$O_{2R_{OC}}$	POC and DOC respiratory consumption of oxygen $(RQ = 1)$	$g O_2 m^{-2} d^{-1}$
k_{O_2}	Piston velocity exchange coefficient	$m d^{-1}$
O_2^{eq}	Concentration at saturation (function of temperature, salinity, and density from Pilson (1998)	$g O_2 m^{-3}$
$O_{2\ avil}$	Modeled available dissolved oxygen concentration	$g O_2 m^{-3}$
W	Average daily wind speed	$m s^{-1}$

LITERATURE CITED

- Brawley JW, Brush MJ, Kremer JN, Nixon SW (2003) Potential applications of an empirical phytoplankton production model to shallow water ecosystems. Ecol Modell 160:55–61
- Lake SJ, Brush MJ (2015) Contribution of nutrient and organic matter sources to the development of periodic hypoxia in a tributary estuary. Estuaries Coasts 38:2149–2171
- Pilson MEQ (1998) An introduction to the chemistry of the sea. Prentice Hall, Upper Saddle River, New Jersey
- Smith EM, Kemp WM (1995) Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Mar Ecol Prog Ser 116:217–232