151 research outputs found

    AGN evolution from large and deep X-ray surveys

    Full text link
    Over the last few years, the existence of mutual feedback effects between accreting supermassive black holes powering AGN and star formation in their host galaxies has become evident. This means that the formation and the evolution of AGN and galaxies should be considered as one and the same problem. As a consequence, the search for, and the characterization of the evolutive and physical properties of AGN over a large redshift interval is a key topic of present research in the field of observational cosmology. Significant advances have been obtained in the last ten years thanks to the sizable number of XMM-Newton and Chandra surveys, complemented by multiwavelength follow-up programs. We will present some of the recent results and the ongoing efforts (mostly from the COSMOS and CDFS surveys) aimed at obtaining a complete census of accreting Black Holes in the Universe, and a characterization of the host galaxies properties.Comment: 8 pages, 5 figures. Invited talk, to be published in the proceedings of the IAU Symposium 267 "Co-evolution of central Black Holes and galaxies", B.M. Peterson, R.S. Somerville, & T. Storchi-Bergmann, eds

    The Iron Line Background

    Full text link
    We investigate the presence of iron line emission among faint X-ray sources identified in the 1Ms Chandra Deep Field South and in the 2Ms Chandra Deep Field North. Individual source spectra are stacked in seven redshift bins over the range z=0.5-4. We find that iron line emission is an ubiquitous property of X-ray sources up to z~3. The measured line strengths are in good agreement with those expected by simple pre-Chandra estimates based on X-ray background synthesis models. The average rest frame equivalent width of the iron line does not show significant changes with redshift.Comment: 5 pages, 2 figures, ApJ Letters in press (include emulateapj.sty

    AGN and QSOs in the eROSITA All-Sky Survey -- Part I: Statistical properties

    Full text link
    Context. The main element of the observing program of the Spectrum-Roentgen-Gamma orbital observatory is a four-year all-sky survey, in the course of which the entire sky will be scanned eight times. Aims. We analyze the statistical properties of AGN and QSOs that are expected to be detected in the course of the eROSITA all-sky survey (eRASS). Methods. According to the currently planned survey strategy and based on the parameters of the Galactic and extragalactic X-ray background as well as on the results of the recent calculations of the eROSITA instrumental background, we computed a sensitivity map of the eRASS. Using the best available redshift-dependent AGN X-ray luminosity function (XLF), we computed various characteristics of the eRASS AGN sample, such as their luminosity- and redshift distributions, and the brightness distributions of their optical counterparts. Results. After four years of the survey, a sky-average sensitivity of ~1x10^(-14) erg/s/cm^2 will be achieved in the 0.5-2.0keV band. With this sensitivity, eROSITA is expected to detect ~3 million AGN on the extragalactic sky (|b|>10deg). The median redshift of the eRASS AGN will be z~1 with ~40% of the objects in the z=1-2 redshift range. About 10^4 - 10^5 AGN are predicted beyond redshift z=3 and about 2 000 - 30 000 AGN beyond redshift z=4, the exact numbers depend on the poorly known behavior of the AGN XLF in the high-redshift and luminosity regimes. Of the detected AGN, the brightest 10% will be detected with more than ~38 counts per PSF HEW, while the faintest 10% will have fewer than ~9 counts. The optical counterparts of ~95% of the AGN will be brighter than I_(AB)=22.5mag. The planned scanning strategy will allow one to search for transient events on a timescale of half a year and a few hours with a 0.5-2.0keV sensitivity of ~2x10^(-14) to ~2x10^(-13) erg/s/cm^2, respectively.Comment: minor additions, accepted for publication in A&

    An X-ray/SDSS sample (II): outflowing gas plasma properties

    Get PDF
    Galaxy-scale outflows are nowadays observed in many active galactic nuclei (AGNs); however, their characterisation in terms of (multi-) phase nature, amount of flowing material, effects on the host galaxy, is still unsettled. In particular, ionized gas mass outflow rate and related energetics are still affected by many sources of uncertainties. In this respect, outflowing gas plasma conditions, being largely unknown, play a crucial role. Taking advantage of the spectroscopic analysis results we obtained studying the X-ray/SDSS sample of 563 AGNs at z <0.8<0.8 presented in our companion paper, we analyse stacked spectra and sub-samples of sources with high signal-to-noise temperature- and density-sensitive emission lines to derive the plasma properties of the outflowing ionized gas component. For these sources, we also study in detail various diagnostic diagrams to infer information about outflowing gas ionization mechanisms. We derive, for the first time, median values for electron temperature and density of outflowing gas from medium-size samples (∼30\sim 30 targets) and stacked spectra of AGNs. Evidences of shock excitation are found for outflowing gas. We measure electron temperatures of the order of ∼1.7×104\sim 1.7\times10^4 K and densities of ∼1200\sim 1200 cm−3^{-3} for faint and moderately luminous AGNs (intrinsic X-ray luminosity 40.5<log(LX)<4440.5<log(L_X)<44 in the 2-10 keV band). We caution that the usually assumed electron density (Ne=100N_e=100 cm−3^{-3}) in ejected material might result in relevant overestimates of flow mass rates and energetics and, as a consequence, of the effects of AGN-driven outflows on the host galaxy.Comment: 16 pages, 10 figures. Accepted for publication in A&

    The MUSE view of He 2-10: no AGN ionization but a sparkling starburst

    Get PDF
    We study the physical and dynamical properties of the ionized gas in the prototypical HII galaxy Henize 2-10 using MUSE integral field spectroscopy. The large scale dynamics is dominated by extended outflowing bubbles, probably the results of massive gas ejection from the central star forming regions. We derive a mass outflow rate dMout/dt~0.30 Msun/yr, corresponding to mass loading factor eta~0.4, in range with similar measurements in local LIRGs. Such a massive outflow has a total kinetic energy that is sustainable by the stellar winds and Supernova Remnants expected in the galaxy. We use classical emission line diagnostic to study the dust extinction, electron density and ionization conditions all across the galaxy, confirming the extreme nature of the highly star forming knots in the core of the galaxy, which show high density and high ionization parameter. We measure the gas phase metallicity in the galaxy taking into account the strong variation of the ionization parameter, finding that the external parts of the galaxy have abundances as low as 12 + log(O/H)~8.3, while the central star forming knots are highly enriched with super solar metallicity. We find no sign of AGN ionization in the galaxy, despite the recent claim of the presence of a super massive active Black Hole in the core of He~2-10. We therefore reanalyze the X-ray data that were used to propose the presence of the AGN, but we conclude that the observed X-ray emission can be better explained with sources of a different nature, such as a Supernova Remnant.Comment: 11 pages, 8 Figures, Accepted for publication in A&

    Multi-phase outflows in Mkn 848 observed with SDSS-MaNGA Integral Field Spectroscopy

    Get PDF
    The characterisation of galaxy-scale outflows in terms of their multi-phase nature, amount, and effects of flowing material is crucial to place constraints on models of galaxy evolution. This study can proceed only with the detailed investigation of individual targets. We present a spatially resolved spectroscopic optical data analysis of Mkn 848, a complex system consisting of two merging galaxies at z~0.04 that are separated 7.5 kpc (projected distance). Motivated by the presence of a multi-phase outflow in the north-west system revealed by the SDSS integrated spectrum, we analysed the publicly available MaNGA data, which cover almost the entire merging system, to study the physical properties of cool and warm gas in detail. Galaxy-wide outflowing gas in multiple phases is revealed for the first time in the two merging galaxies. We also detect spatially resolved resonant NaID emission associated with the outflows. The derived outflow energetics may be consistent with a scenario in which both winds are accelerated by stellar processes and AGN activity, although we favour an AGN origin given the high outflow velocities and the ionisation conditions observed in the outflow regions. Deeper observations are required, however, to better constrain the nature of these multi-phase outflows. Outflow energetics in the north-west system are strongly different between the ionised and atomic gas components, the latter of which is associated with mass outflow rate and kinetic and momentum powers that are 1-2 dex higher; those associated with the south-east galaxy are instead similar. Strong kp-scale outflows are revealed in an ongoing merger system, suggesting that feedback can potentially impact the host galaxy even in the early merger phases. The characterisation of the neutral and ionised gas phases has proved to be crucial for a comprehensive study of the outflow phenomena.Comment: 19 pages, 14 figures, accepted for publication in A&
    • …
    corecore