622 research outputs found

    Group Education for patients with rheumatoid arthritis

    Get PDF
    Patients with rheumatoid arthritis must learn to adjust their exercise, rest and medication to the varying activity of the disease. Patient education can help patients in making the right decisions about adjustments in their treatment regimen and in attaining ¿self-management¿ behaviors. We developed a group education program based on social learning theory and the `Arthritis Self Management Course¿ developed in the USA by Lorig. Goal of the program is the strengthening of self-efficacy, outcome expectations and self-management behaviors of RA patients which may lead to better health status. The program has been evaluated in an experimental design. We established significant positive effects of the group training on functional disability, joint tenderness, practice of relaxation and physical exercises, self-management behavior, outcome expectations, self-efficacy function and knowledge. After 14 months we still found effects on practice of physical exercises, self-efficacy function and knowledge

    Patient education and disease activity: A study among rheumatoid arthritis patients

    Get PDF
    Objective: To determine whether patients experiencing high disease activity derive more benefit from patient education than those experiencing low disease activity. - \ud Methods: Data from a randomized study on the effects of a program of patient education were analyzed retrospectively. Four subgroups were studied: the high disease activity subgroup of patients who had participated in the educational program, the complementary low disease activity subgroup, the high disease activity subgroup of controls, and its low disease activity complement. Patients with erythrocyte sedimentation rate >28 mm/first hour were classified as having high disease activity. Effects on frequency of physical exercises, endurance exercises, and relaxation exercises and effects on health status (Modified Health Assessment Questionnaire, Dutch Arthritis Impact Measurement Scales [AIMS]) were measured. - \ud Results: There were no significant differences between the adherence parameters of the various pairs of groups. Four months after the educational program began, anxiety and depression scores on the Dutch-AIMS had increased among participating patients who were experiencing high disease activity and decreased among those who were experiencing low disease activity. - \ud Conclusions: Patients experiencing high disease activity did not derive more benefit from patient education than those experiencing low disease activity. On the contrary, an increase of anxiety and depression is found in these patients. Further study is needed to confirm our findings

    Mortality following a brain tumour diagnosis in patients with multiple sclerosis

    Get PDF
    Objectives: As brain tumours and their treatment may theoretically have a poorer prognosis in inflammatory central nervous system diseases such as multiple sclerosis (MS), all-cause mortality following a brain tumour diagnosis was compared between patients with and without MS. The potential role of age at tumour diagnosis was also examined. Setting: Hospital inpatients in Sweden with assessment of mortality in hospital or following discharge. Participants: Swedish national registers identified 20 543 patients with an MS diagnosis (1969-2005) and they were matched individually to produce a comparison cohort of 204 163 members of the general population without MS. Everyone with a primary brain tumour diagnosis was selected for this study: 111 with MS and 907 without MS. Primary and secondary outcome measures: 5-year mortality risk following brain tumour diagnosis and age at brain tumour diagnosis. Results: A non-statistically significant lower mortality risk among patients with MS (lower for those with tumours of high-grade and uncertain-grade malignancy and no notable difference for low-grade tumours) produced an unadjusted HR (and 95% CI) of 0.75 (0.56 to 1.02). After adjustment for age at diagnosis, grade of malignancy, sex, region of residence and socioeconomic index, the HR is 0.91 (0.67-1.24). The change in estimate was largely due to adjustment for age at brain tumour diagnosis, as patients with MS were on average 4.7 years younger at brain tumour diagnosis than those in the comparison cohort (p<0.001). Conclusions: Younger age at tumour diagnosis may contribute to mortality reduction in those with highgrade and uncertain-grade brain tumours. Survival following a brain tumour is not worse in patients with MS; even after age at brain tumour diagnosis and grade of malignancy are taken into account

    Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach

    Get PDF
    The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported. The nanodispersed materials obtained show quantum size effects in their optical spectra and exhibit near band-edge luminescence. The influence of experimental parameters on the properties of the nanocrystallites is discussed. HRTEM images of these materials show well-defined, crystalline nanosized particles. Standard size fractionation procedures can be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine, are used as the starting materials for the preparation of novel nanocomposites. The optical properties shown by these new nanocomposites are compared with those of the starting nanodispersed materials

    An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes

    Get PDF
    We obtain an effective parametrization of the bulk electronic structure of InP within the Tight Binding scheme. Using these parameters, we calculate the electronic structure of InP clusters with the size ranging upto 7.5 nm. The calculated variations in the electronic structure as a function of the cluster size is found to be in excellent agreement with experimental results over the entire range of sizes, establishing the effectiveness and transferability of the obtained parameter strengths.Comment: 9 pages, 3 figures, pdf file available at http://sscu.iisc.ernet.in/~sampan/publications.htm

    WS2 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits

    Get PDF
    We report on the achievement of a large-scale tungsten disulfide (WS2) 2D semiconducting platform derived by pulsed-laser deposition (PLD) on both insulating substrates (SrTiO3), as required for in-plane semiconductor circuit definition, and ferromagnetic spin sources (Ni), as required for spintronics applications. We show thickness and phase control, with highly homogeneous wafer-scale monolayers observed under certain conditions, as demonstrated by X-ray photoelectron spectroscopy and Raman spectroscopy mappings. Interestingly, growth appears to be dependent on the substrate selection, with a dramatically increased growth rate on Ni substrates. We show that this 2D-semiconductor integration protocol preserves the interface integrity. Illustratively, the WS2/Ni electrode is shown to be resistant to oxidation (even after extended exposure to ambient conditions) and to present tunneling characteristics once integrated into a complete vertical device. Overall, these experiments show that the presented PLD approach used here for WS2 growth is versatile and has a strong potential to accelerate the integration and evaluation of large-scale 2D-semiconductor platforms in electronics and spintronics circuits

    A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots

    Full text link
    Excitonic spectra are calculated for free-standing, surface passivated InAs quantum dots using atomic pseudopotentials for the single-particle states and screened Coulomb interactions for the two-body terms. We present an analysis of the single particle states involved in each excitation in terms of their angular momenta and Bloch-wave parentage. We find that (i) in agreement with other pseudopotential studies of CdSe and InP quantum dots, but in contrast to k.p calculations, dot states wavefunction exhibit strong odd-even angular momentum envelope function mixing (e.g. ss with pp) and large valence-conduction coupling. (ii) While the pseudopotential approach produced very good agreement with experiment for free-standing, colloidal CdSe and InP dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted spectrum does {\em not} agree well with the measured (ensemble average over dot sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure one, and (2) while the spacing between the lowest excitons is reproduced, the spacings between higher excitons is not fit well. Discrepancy (1) could result from surface states emission. As for (2), agreement is improved when account is taken of the finite size distribution in the experimental data. (iii) We find that the single particle gap scales as R−1.01R^{-1.01} (not R−2R^{-2}), that the screened (unscreened) electron-hole Coulomb interaction scales as R−1.79R^{-1.79} (R−0.7R^{-0.7}), and that the eccitonic gap sclaes as R−0.9R^{-0.9}. These scaling laws are different from those expected from simple models.Comment: 12 postscript figure

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Atomic layer deposition of a MgO barrier for a passivated black phosphorus spintronics platform

    Get PDF
    We demonstrate a stabilized black phosphorus (BP) 2D platform thanks to an ultrathin MgO barrier, as required for spintronic device integration. The in-situ MgO layer deposition is achieved by using a large-scale atomic layer deposition process with high nucleation density. Raman spectroscopy studies show that this layer protects the BP from degradation in ambient conditions, unlocking in particular the possibility to carry out usual lithographic fabrication steps. The resulting MgO/BP stack is then integrated in a device and probed electrically, confirming the tunnel properties of the ultrathin MgO contacts. We believe that this demonstration of a BP material platform passivated with a functional MgO tunnel barrier provides a promising perspective for BP spin transport devices

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.
    • …
    corecore