47 research outputs found

    Structural insight into nucleotide recognition by human death-associated protein kinase

    Get PDF
    The crystal structures of DAPK–ADP–Mg2+ and DAPK–AMP-PNP–Mg2+ complexes were determined at 1.85 and 2.00 Å resolution, respectively. Comparison of the two nucleotide-bound states with apo DAPK revealed localized changes in the glycine-rich loop region that were indicative of a transition from a more open state to a more closed state on binding of the nucleotide substrate and to an intermediate state with the bound nucleotide product

    Site-directed mutagenesis of the glycine-rich loop of death associated protein kinase (DAPK) identifies it as a key structure for catalytic activity

    Get PDF
    AbstractDeath associated protein kinase (DAPK) is a calmodulin (CaM)-regulated protein kinase that is a therapeutic target for central nervous system (CNS) disorders. We report here the results of studies that test the hypothesis of McNamara et al. (2009) that conformational selection in DAPK's glycine-rich region is key for catalytic activity. The hypothesis was tested by site-directed mutagenesis of glutamine-23 (Q23) in the middle of this loop. The glycine-rich loop exhibits localized differences in structure among DAPK conformations that correlate with different stages of the catalytic cycle. Changing the Q23 to a Valine (V23), found at the corresponding position in another CaM regulated protein kinase, results in a reduced catalytic efficiency. High resolution X-ray crystal structures of various conformations of the Q23V mutant DAPK and their superimposition with the corresponding conformations from wild type catalytic domain reveal localized changes in the glycine-rich region. The effect of the mutation on DAPK catalytic activity and the finding of only localized changes in the DAPK structure provide experimental evidence implicating conformational selection in this domain with activity. This article is part of a Special Issue entitled: 11th European Symposium on Calcium

    The mononuclear metal center of type-I dihydroorotase from aquifex aeolicus

    Get PDF
    Abstract Background Dihydroorotase (DHO) is a zinc metalloenzyme, although the number of active site zinc ions has been controversial. E. coli DHO was initially thought to have a mononuclear metal center, but the subsequent X-ray structure clearly showed two zinc ions, α and β, at the catalytic site. Aquifex aeolicus DHO, is a dodecamer comprised of six DHO and six aspartate transcarbamoylase (ATC) subunits. The isolated DHO monomer, which lacks catalytic activity, has an intact α-site and conserved β-site ligands, but the geometry of the second metal binding site is completely disrupted. However, the putative β-site is restored when the complex with ATC is formed and DHO activity is regained. Nevertheless, the X-ray structure of the complex revealed a single zinc ion at the active site. The structure of DHO from the pathogenic organism, S. aureus showed that it also has a single active site metal ion. Results Zinc analysis showed that the enzyme has one zinc/DHO subunit and the addition of excess metal ion did not stimulate catalytic activity, nor alter the kinetic parameters. The metal free apoenzyme was inactive, but the full activity was restored upon the addition of one equivalent of Zn2+ or Co2+. Moreover, deletion of the β-site by replacing the His180 and His232 with alanine had no effect on catalysis in the presence or absence of excess zinc. The 2.2 Å structure of the double mutant confirmed that the β-site was eliminated but that the active site remained otherwise intact. Conclusions Thus, kinetically competent A. aeolicus DHO has a mononuclear metal center. In contrast, elimination of the putative second metal binding site in amidohydrolyases with a binuclear metal center, resulted in the abolition of catalytic activity. The number of active site metal ions may be a consideration in the design of inhibitors that selectively target either the mononuclear or binuclear enzymes

    Lysine 53 Acetylation of Cytochrome c in Prostate Cancer: Warburg Metabolism and Evasion of Apoptosis

    Get PDF
    Prostate cancer is the second leading cause of cancer-related death in men. Two classic cancer hallmarks are a metabolic switch from oxidative phosphorylation (OxPhos) to glycolysis, known as the Warburg effect, and resistance to cell death. Cytochrome c (Cytc) is at the intersection of both pathways, as it is essential for electron transport in mitochondrial respiration and a trigger of intrinsic apoptosis when released from the mitochondria. However, its functional role in cancer has never been studied. Our data show that Cytc is acetylated on lysine 53 in both androgen hormone-resistant and -sensitive human prostate cancer xenografts. To characterize the functional effects of K53 modification in vitro, K53 was mutated to acetylmimetic glutamine (K53Q), and to arginine (K53R) and isoleucine (K53I) as controls. Cytochrome c oxidase (COX) activity analyzed with purified Cytc variants showed reduced oxygen consumption with acetylmimetic Cytc compared to the non-acetylated Cytc (WT), supporting the Warburg effect. In contrast to WT, K53Q Cytc had significantly lower caspase-3 activity, suggesting that modification of Cytc K53 helps cancer cells evade apoptosis. Cardiolipin peroxidase activity, which is another proapoptotic function of the protein, was lower in acetylmimetic Cytc. Acetylmimetic Cytc also had a higher capacity to scavenge reactive oxygen species (ROS), another pro-survival feature. We discuss our experimental results in light of structural features of K53Q Cytc, which we crystallized at a resolution of 1.31 Å, together with molecular dynamics simulations. In conclusion, we propose that K53 acetylation of Cytc affects two hallmarks of cancer by regulating respiration and apoptosis in prostate cancer xenografts

    Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: Implications for AMP Kinase

    Get PDF
    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc iso- lated from kidneys is phosphorylated on Thr28, leading to a par- tial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing supe- rior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type un- phosphorylated Cytc. Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (����m), and ROS levels are reduced compared with wild type. As we show by high resolu- tion crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a cen- tral position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kid- ney, is the most likely candidate to phosphorylate Thr28 in vivo. We conclude that Cytc phosphorylation is mediated in a tissue- specific manner and leads to regulation of electron transport chain flux via “controlled respiration,” preventing ����m hyperpolarization, a known cause of ROS and trigger of apoptosis

    The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication

    Get PDF
    The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. Here, we show that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed H3K27me1 in plants depends on H3.1, TSK and DNA polymerase theta (Pol θ). Overall, this work reveals an H3.1-specific function during replication and the common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone mono-methyltransferases and reading the H3.1 variant

    The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases

    Get PDF
    In mammals, the SET1 family of lysine methyltransferases (KMTs), which includes MLL1-5, SET1A and SET1B, catalyzes the methylation of lysine-4 (Lys-4) on histone H3. Recent reports have demonstrated that a three-subunit complex composed of WD-repeat protein-5 (WDR5), retinoblastoma-binding protein-5 (RbBP5) and absent, small, homeotic disks-2-like (ASH2L) stimulates the methyltransferase activity of MLL1. On the basis of studies showing that this stimulation is in part controlled by an interaction between WDR5 and a small region located in close proximity of the MLL1 catalytic domain [referred to as the WDR5-interacting motif (Win)], it has been suggested that WDR5 might play an analogous role in scaffolding the other SET1 complexes. We herein provide biochemical and structural evidence showing that WDR5 binds the Win motifs of MLL2-4, SET1A and SET1B. Comparative analysis of WDR5-Win complexes reveals that binding of the Win motifs is achieved by the plasticity of WDR5 peptidyl-arginine-binding cleft allowing the C-terminal ends of the Win motifs to be maintained in structurally divergent conformations. Consistently, enzymatic assays reveal that WDR5 plays an important role in the optimal stimulation of MLL2-4, SET1A and SET1B methyltransferase activity by the RbBP5-ASH2L heterodimer. Overall, our findings illustrate the function of WDR5 in scaffolding the SET1 family of KMTs and further emphasize on the important role of WDR5 in regulating global histone H3 Lys-4 methylation

    Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5

    Get PDF
    APPL1 is an effector of the small GTPase Rab5. Together, they mediate a signal transduction pathway initiated by ligand binding to cell surface receptors. Interaction with Rab5 is confined to the amino (N)-terminal region of APPL1. We report the crystal structures of human APPL1 N-terminal BAR-PH domain motif. The BAR and PH domains, together with a novel linker helix, form an integrated, crescent-shaped, symmetrical dimer. This BAR–PH interaction is likely conserved in the class of BAR-PH containing proteins. Biochemical analyses indicate two independent Rab-binding sites located at the opposite ends of the dimer, where the PH domain directly interacts with Rab5 and Rab21. Besides structurally supporting the PH domain, the BAR domain also contributes to Rab binding through a small surface region in the vicinity of the PH domain. In stark contrast to the helix-dominated, Rab-binding domains previously reported, APPL1 PH domain employs β-strands to interact with Rab5. On the Rab5 side, both switch regions are involved in the interaction. Thus we identified a new binding mode between PH domains and small GTPases

    Cytochrome c lysine acetylation regulates cellular respiration and cell death in ischemic skeletal muscle

    Get PDF
    Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.This work was supported by the National Institutes of Health grants R01 GM116807 (M.H.) and R01 NS120322 (M.H.), a Competitive Graduate Research Assistant Award from the Wayne State University Graduate School (P.T.M), and research grants from the Spanish Ministry of Science and Innovation (PGC2018-096049-B-I00 and PID2021-126663NB-I00; I.D-M.), European Regional Development Fund (FEDER; I.D-M.), Andalusian Government (BIO-198, US-1254317, US-1257019, P18-FR-3487, and P18HO-4091, US/JUNTA/FEDER, UE; I.D-M), University of Seville (VI PPIT) and the Ramón Areces Foundation (I.D-M.). G.P-M. was awarded a Ph.D. fellowship from the Spanish Ministry of Education, Culture, and Sport (FPU17/04604). This research used resources from the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility operated for the Department of Energy Office of Science by Argonne National Laboratory under Contract DE-AC02- 06CH11357. Use of the Life Sciences Collaborative Access Team (LS-CAT) Sector 21 was supported by the Michigan Economic Development Corp., the Michigan Technology Tri-Corridor (Grant 085P1000817; M.H.), and Wayne State University’s Office of the Vice-President for Research (M.H.). We thank Dr. Carlos Moraes at the University of Miami for providing the Cytc double knockout cell line, Beata Lukaszewska-McGreal for proteome sample preparation, and Dr. Pavel Afonine for an alternate script for Phenix. refine, Philippe Archambault of the Chemical Computing Group for his technical advice, the support of the Max Planck Society, and the staff from the NMR facility at CITIUS (University of Seville).Peer reviewe

    Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase

    No full text
    SET8 (also known as PR-SET7) is a histone H4-Lys-20-specific methyltransferase that is implicated in cell-cycle-dependent transcriptional silencing and mitotic regulation in metazoans. Herein we report the crystal structure of human SET8 (hSET8) bound to a histone H4 peptide bearing Lys-20 and the product cofactor S-adenosylhomocysteine. Histone H4 intercalates in the substrate-binding cleft as an extended parallel β-strand. Residues preceding Lys-20 in H4 engage in an extensive array of salt bridge, hydrogen bond, and van der Waals interactions with hSET8, while the C-terminal residues bind through predominantly hydrophobic interactions. Mutational analysis of both the substrate-binding cleft and histone H4 reveals that interactions with residues in the N and C termini of the H4 peptide are critical for conferring substrate specificity. Finally, analysis of the product specificity indicates that hSET8 is a monomethylase, consistent with its role in the maintenance of Lys-20 monomethylation during cell division
    corecore