32,637 research outputs found

    It\u27s Fun, But Is It Science? Goals and Strategies in a Problem-Based Learning Course

    Get PDF
    All students at Hampshire College must complete a science requirement in which they demonstrate their understanding of how science is done, examine the work of science in larger contexts, and communicate their ideas effectively. Human Biology: Selected Topics in Medicine is one of 18-20 freshman seminars designed to move students toward completing this requirement. Students work in cooperative groups of 4-6 people to solve actual medical cases about which they receive information progressively. Students assign themselves homework tasks to bring information back for group deliberation. The goal is for case teams to work cooperatively to develop a differential diagnosis and recommend treatment. Students write detailed individual final case reports. Changes observed in student work over six years of developing this course include: increased motivation to pursue work in depth, more effective participation on case teams, increase in critical examination of evidence, and more fully developed arguments in final written reports. As part of a larger study of eighteen introductory science courses in two institutions, several types of pre- and post-course assessments were used to evaluate how teaching approaches might have influenced students’ attitudes about science, their ability to learn science, and their understanding of how scientific knowledge is developed [1]. Preliminary results from interviews and Likert-scale measures suggest improvements in the development of some students’ views of epistemology and in the importance of cooperative group work in facilitating that development

    Geometric phase and gauge theory structure in quantum computing

    Full text link
    We discuss the presence of a geometrical phase in the evolution of a qubit state and its gauge structure. The time evolution operator is found to be the free energy operator, rather than the Hamiltonian operator.Comment: 5 pages, presented at Fifth International Workshop DICE2010: Space-Time-Matter - current issues in quantum mechanics and beyond, Castiglioncello (Tuscany), September 13-17, 201

    Ultrasensitivity in phosphorylation-dephosphorylation cycles with little substrate

    Get PDF
    Cellular decision-making is driven by dynamic behaviours, such as the preparations for sunrise enabled by circadian rhythms and the choice of cell fates enabled by positive feedback. Such behaviours are often built upon ultrasensitive responses where a linear change in input generates a sigmoidal change in output. Phosphorylation-dephosphorylation cycles are one means to generate ultrasensitivity. Using bioinformatics, we show that in vivo levels of kinases and phosphatases frequently exceed the levels of their corresponding substrates in budding yeast. This result is in contrast to the conditions often required by zero-order ultrasensitivity, perhaps the most well known means for how such cycles become ultrasensitive. We therefore introduce a mechanism to generate ultrasensitivity when numbers of enzymes are higher than numbers of substrates. Our model combines distributive and non-distributive actions of the enzymes with two-stage binding and concerted allosteric transitions of the substrate. We use analytical and numerical methods to calculate the Hill number of the response. For a substrate with [Formula: see text] phosphosites, we find an upper bound of the Hill number of [Formula: see text], and so even systems with a single phosphosite can be ultrasensitive. Two-stage binding, where an enzyme must first bind to a binding site on the substrate before it can access the substrate's phosphosites, allows the enzymes to sequester the substrate. Such sequestration combined with competition for each phosphosite provides an intuitive explanation for the sigmoidal shifts in levels of phosphorylated substrate. Additionally, we find cases for which the response is not monotonic, but shows instead a peak at intermediate levels of input. Given its generality, we expect the mechanism described by our model to often underlay decision-making circuits in eukaryotic cells

    The essential oil of Thymbra capitata and its application as a biocide on stone and derived surfaces

    Get PDF
    Many chemicals used nowadays for the preservation of cultural heritage pose a risk to both human health and the environment. Thus, it is desirable to find new and eco-friendly biocides that can replace the synthetic ones. In this regard, plant essential oils represent effective alternatives to synthetic substances for the preservation of historical monuments. Thymbra capitata (syn. Thymus capitatus) is a medicinal and aromatic plant growing in the Mediterranean area and endowed with important pharmacological properties related to its essential oil. Among them, the antimicrobial ones make the T. capitata essential oil an ideal candidate for industrial applications; for instance, as biocide for the inhibition and elimination of biological patinas of cyanobacteria and green algae on historical monuments. In the present work, we studied the chemical composition of the essential oil from T. capitata growing in Malta by gas chromatography-mass spectrometry (GC/MS). The major volatile component is the phenolic monoterpene carvacrol (73.2%), which is capable of damaging the cytoplasmic membrane and to interfere both in the growth curve and in the invasive capacity, though the contribution of minor components γ-terpinene and p-cymene cannot be disregarded. For the oil application on the stone surface, Pickering emulsions systems were prepared with an essential oil/water 1:3 mass ratio stabilized with kaolinite at 4 mass% in the presence of Laponite®; this allowed to limit the fast volatility of the oil and guaranteed a better application and an easier removal from the artefacts attacked by biodeteriogens both indoor and outdoor. This formulation caused the elimination of biodeteriogens from treated surfaces without residuals or films on artworks surface, and the effect was retained up to four months

    Multiscale Fractal Descriptors Applied to Nanoscale Images

    Full text link
    This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the}Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application

    Multilayer Complex Network Descriptors for Color-Texture Characterization

    Full text link
    A new method based on complex networks is proposed for color-texture analysis. The proposal consists on modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet and MBT. Results among various literature methods are compared, including deep convolutional neural networks with pre-trained architectures. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers.Comment: 20 pages, 7 figures and 4 table

    Theory of interlayer exchange interactions in magnetic multilayers

    Full text link
    This paper presents a review of the phenomenon of interlayer exchange coupling in magnetic multilayers. The emphasis is put on a pedagogical presentation of the mechanism of the phenomenon, which has been successfully explained in terms of a spin-dependent quantum confinement effect. The theoretical predictions are discussed in connection with corresponding experimental investigations.Comment: 18 pages, 4 PS figures, LaTeX with IOP package; v2: ref. added. Further (p)reprints available from http://www.mpi-halle.de/~theory
    • …
    corecore