89 research outputs found

    Techno-economic assessment of hydrogen production from seawater

    Get PDF
    Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source, resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser, using the abondand water resources, which are covering around ⅔ of the Earth's surface. Electrolysers, however, require high-quality water, with conductivity in the range of 0.1–1 μS/cm. In January 2018, there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater, with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser, by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US dollars 3.51/kg H2. The best option for low-cost power generation, using renewable resources such as photovoltaic (PV) devices, wind turbines, as well as electricity from the grid was assessed, considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore, meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources, under the assumption of a nominal discount rate, inflation rate, project lifetime, and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro, and the main findings being as follows: The cost of producing water with quality required by the electrolyser is low, compared with the cost of electricity for operation of the electrolyser, and therefore has little effect on the total cost of hydrogen production (less than 1%). The optimal solution was shown to be electricity from the grid, which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US dollars 5/kg H2. Grid based electricity resulted in the lowest hydrogen production cost, even when costs for CO2 emissions in Norway, that will start to apply in 2025 was considered, being approximately US dollars 7.7/kg H2. From economical point of view, wind energy was found to be a more economical than solar.publishedVersio

    Hydrogen absorption study of high-energy reactive ball milled Mg composites with palladium additives

    Get PDF
    Hydrogenation behaviour, structure, morphology and dehydrogenation/re-hydrogenation performances of Mg–Pd nanocomposites prepared by high-energy reactive ball milling in H2 (HRBM) of Mg in the presence of amorphous and crystalline Pd black (0.1–5 wt.%) were studied. Improvements of hydrogenation kinetics during HRBM were observed only for the materials prepared using crystalline Pd black. The obtained nanocomposites were characterised by modest improvements in their dehydrogenation and re-hydrogenation performances associated with the formation of Mg–Pd intermetallides.Web of Scienc

    Supported 3-D Pt nanostructures: the straightforward synthesis and enhanced electrochemical performance for methanol oxidation in an acidic medium

    Get PDF
    Noble metal nanostructures with branched morphologies [i.e., 3-D Pt nanoflowers (NFs)] by tridimensionally integrating onto conductive carbon materials are proved to be an efficient and durable electrocatalysts for methanol oxidation. The well-supported 3-D Pt NFs are readily achieved by an efficient cobalt-induced/carbon-mediated galvanic reaction approach. Due to the favorable nanostructures (3-D Pt configuration allowing a facile mass transfer) and supporting effects (including framework stabilization, spatially separate feature, and improved charge transport effects), these 3-D Pt NFs manifest much higher electrocatalytic activity and stability toward methanol oxidation than that of the commercial Pt/C and Pt-based electrocatalysts.Web of Scienc

    Pt decorated amorphous RuIr alloys as high efficiency electrocatalyst for methanol oxidation

    Get PDF
    This study focuses primarily on improving the utilization and activity of anodic catalysts for methanol electro-oxidation. The Direct Methanol Fuel Cell (DMFC) anodic catalyst, a carbon supported Pt decorated amorphous RuIr nanoparticles catalyst (Pt@RuIr/C) was prepared by a two-step reduction method. The structure of Pt@RuIr/C nanoparticles was confirmed by Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). The Pt@RuIr electrocatalysts exhibited good uniformity in distribution. Cyclic Voltammetry experiments showed that under the same quality of noble-metal, the Pt@RuIr/C catalyst had higher activity than the PtRuIr/C catalyst for methanol oxidation. It was also shown that the as-prepared structure of the Pt decorated amorphous RuIr alloys could obviously decrease the usage of noble-metal and enhance its catalytic activity at the same time.Web of Scienc

    Thermal conductivity and temperature profiles of the micro porous layers used for the polymer electrolyte membrane fuel cell

    Get PDF
    The thermal conductivity and the thickness change with pressure of several different micro porous layers (MPL) used for the polymer electrolyte membrane fuel cell (PEMFC) were measured. The MPL were made with different compositions of carbon and polytetrafluoroethylene (PTFE). A one-dimensional thermal PEMFC model was used to estimate the impact that the MPL has on the temperature profiles though the PEMFC. The thermal conductivity was found to vary from as low as 0.05 up to as high as 0.12 W K 1 m 1 while the compaction pressure was varied from 4 bar and up to around 16 bar resulting in a decrease in thickness of approximately 40%. The PTFE content, which varied between 10 and 25%, did not result in any significant change in the compression or thermal conductivity. Both the thickness and the thermal conductivity changed irreversibly with compaction pressure. Considering a MPL thermal conductivity of 0.1 W K 1 m 1, a MPL thickness of 45 mm, a current density of 10 kAm 2 (1.0 A cm 2), liquid water (production and sorption), and a 30 mm membrane it was found that the MPL is responsible for a temperature increase of up to 2 C. This contribution can be lowered by integrating the MPL into the porous transport layer.Web of Scienc

    Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer

    Get PDF
    Gas diffusion electrodes (GDEs) prepared with various polymer binders in their catalyst layers (CLs) were investigated to optimize the performance of phosphoric acid doped polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cells (HT-PEMFCs). The properties of these binders in the CLs were evaluated by structure characterization, electrochemical analysis, single cell polarization and durability test. The results showed that polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) are more attractive as CL binders than conventional PBI or Nafion binder. At ambient pressure and 160 o C, the maximum power density can reach w 0.61 W cm-2 (PTFE GDE), and the current density at 0.6 V is up to ca. 0.52 A cm-2 (PVDF GDE), with H2/air and a platinum loading of 0.5 mg cm-2 on these electrodes. Also, both GDEs showed good stability for fuel cell operation in a short term durability test.Web of Scienc

    Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen

    Get PDF
    Time-resolved studies uncovered kinetics and mechanism of Mg–hydrogen interactions during High energy reactive ball milling in hydrogen (HRBM) in presence of various types of carbon, including graphite (G), activated carbon (AC), multi-wall carbon nanotubes (MWCNT), expandable (EG) and thermally-expanded (TEG) graphite. Introduction of carbon significantly changes the hydrogenation behaviour, which becomes strongly dependent on the nature and amount of carbon additive. For the materials containing 1 wt.% AC or TEG, and 5 wt.% MWCNT, the hydrogenation becomes superior to that for the individual magnesium and finishes within 1 h. Analysis of the data indicates that carbon acts as a carrier of the ‘‘activated’’ hydrogen by a mechanism of spill-over. For Mg–G the hydrogenation starts from an incubation period and proceeds slower. An increase in the content of EG and TEG above 1 wt.% results in the deterioration of the hydrogenation kinetics. The effect of carbon additives has roots in their destruction during the HRBM to form graphene layers encapsulating the MgH2 nanoparticles and preventing the grain growth. This results in an increase of absorption–desorption cycle stability and a decrease of the MgH2 crystallite size in the re-hydrogenated Mg–C hybrid materials (40–125 nm) as compared to Mg alone (180 nm).Web of Scienc

    Poisoning-tolerant metal hydride materials and their application for hydrogen separation from CO2/CO containing gas mixtures

    Get PDF
    Metal hydride materials offer attractive solutions in addressing problems associated with hydrogen separation and purification from waste flue gases. However, a challenging problem is the deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases. In this work, the feasibility study of poisoning tolerance of surface modified AB5-type hydride forming materials and their application for hydrogen separation from process gases containing carbon dioxide and monoxide was carried out. Target composition of La(Ni,Co,Mn,Al)5 substrate was chosen to provide maximum reversible hydrogen capacity at the process conditions. The selected substrate alloy has been shown to be effectively surface-modified by fluorination followed by electroless deposition of palladium. The surface-modified material exhibited good coating quality, high cycle stability and minimal deterioration of kinetics of selective hydrogen absorption at room temperature, from gas mixtures containing 10% CO2 and up to 100 ppm CO. The experimental prototype of a hydrogen separation unit, based on the surface-modified metal hydride material, was tested and exhibited stable hydrogen separation and purification performances when exposed to feedstocks containing concentrations of CO2Web of Scienc

    Fuel cell-battery hybrid powered light electric vehicle (golf cart): Influence of fuel cell on the driving performance

    Get PDF
    A light electric vehicle (golf cart, 5 kW nominal motor power) was integrated with a commercial 1.2 kW PEM fuel cell system, and fuelled by compressed hydrogen (two composite cylinders, 6.8 L/300 bar each). Comparative driving tests in the battery and hybrid (battery þ fuel cell) powering modes were performed. The introduction of the fuel cell was shown to result in extending the driving range by 63-110%, when the amount of the stored H2 fuel varied within 55-100% of the maximum capacity. The operation in the hybrid mode resulted in more stable driving performances, as well as in the increase of the total energy both withdrawn by the vehicle and returned to the vehicle battery during the driving. Statistical analysis of the power patterns taken during the driving in the battery and hybrid-powering modes showed that the latter provided stable operation in a wider power range, including higher frequency and higher average values of the peak power.Web of Scienc
    • …
    corecore