29,560 research outputs found

    Above-room-temperature ferromagnetism in half-metallic Heusler compounds NiCrP, NiCrSe, NiCrTe and NiVAs: A first-principles study

    Full text link
    We study the interatomic exchange interactions and Curie temperatures in half-metallic semi Heusler compounds NiCrZ (Z=P, Se, Te) and NiVAs. The study is performed within the framework of density functional theory. The calculation of exchange parameters is based on the frozen-magnon approach. It is shown that the exchange interactions in NiCrZ vary strongly depending on the Z constituent. The Curie temperature, Tc, is calculated within the mean field and random phase approximations. The difference between two estimations is related to the properties of the exchange interactions. The predicted Curie temperatures of all four systems are considerably higher than room temperature. The relation between the half-metallicity and the value of the Curie temperature is discussed. The combination of a high spin-polarization of charge carriers and a high Curie temperature makes these Heusler alloys interesting candidates for spintronics applications.Comment: 6 pages, 3 figure

    Stability of ferromagnetism in the half-metallic pnictides and similar compounds: A first-principles study

    Full text link
    Based on first-principles electron structure calculations and employing the frozen-magnon approximation we study the exchange interactions in a series of transition-metal binary alloys crystallizing in the zinc-blende structure and calculate the Curie temperature within both the mean-field approximation (MFA) and random-phase approximation (RPA). We study two Cr compounds, CrAs and CrSe, and four Mn compounds: MnSi, MnGe, MnAs and MnC. MnC, MnSi and MnGe are isovalent to CrAs and MnAs is isoelectronic with CrSe. Ferromagnetism is particular stable for CrAs, MnSi and MnGe: All three compounds show Curie temperatures around 1000 K. On the other hand, CrSe and MnAs show a tendency to antiferromagnetism when compressing the lattice. In MnC the half-metallic gap is located in the majority-spin channel contrary to the other five compounds. The large half-metallic gaps, very high Curie temperatures, the stability of the ferromagnetism with respect to the variation of the lattice parameter and a coherent growth on semiconductors make MnSi and CrAs most promising candidates for the use in spintronics devises.Comment: 17 pages, 6 figure

    Sampling-Based Query Re-Optimization

    Full text link
    Despite of decades of work, query optimizers still make mistakes on "difficult" queries because of bad cardinality estimates, often due to the interaction of multiple predicates and correlations in the data. In this paper, we propose a low-cost post-processing step that can take a plan produced by the optimizer, detect when it is likely to have made such a mistake, and take steps to fix it. Specifically, our solution is a sampling-based iterative procedure that requires almost no changes to the original query optimizer or query evaluation mechanism of the system. We show that this indeed imposes low overhead and catches cases where three widely used optimizers (PostgreSQL and two commercial systems) make large errors.Comment: This is the extended version of a paper with the same title and authors that appears in the Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2016

    Propagation of Correlations in Quantum Lattice Systems

    Full text link
    We provide a simple proof of the Lieb-Robinson bound and use it to prove the existence of the dynamics for interactions with polynomial decay. We then use our results to demonstrate that there is an upper bound on the rate at which correlations between observables with separated support can accumulate as a consequence of the dynamics.Comment: 10 page

    Temperature and frequency dependent optical properties of ultra-thin Au films

    Full text link
    While the optical properties of thin metal films are well understood in the visible and near-infrared range, little has been done in the mid- and far-infrared region. Here we investigate ultra-thin gold films prepared on Si(111)(7 x 7) in UHV by measuring in the frequency range between 500 cm-1 and 7000 cm-1 and for temperatures between 300 K and 5 K. The nominal thickness of the gold layers ranges between one monolayer and 9 nm. The frequency and temperature dependences of the thicker films can be well described by the Drude model of a metal, when taking into account classical size effects due to surface scattering. The films below the percolation threshold exhibit a non-metallic behavior: the reflection increases with frequency and decreases with temperature. The frequency dependence can partly be described by a generalized Drude model. The temperature dependence does not follow a simple activation process. For monolayers we observe a transition between surface states around 1100 cm-1.Comment: 7 pages, 10 figure

    Distillation by repeated measurements: continuous spectrum case

    Full text link
    Repeated measurements on a part of a bipartite system strongly affect the other part not measured, whose dynamics is regulated by an effective contracted evolution operator. When the spectrum of this operator is discrete, the latter system is driven into a pure state irrespective of the initial state, provided the spectrum satisfies certain conditions. We here show that even in the case of continuous spectrum an effective distillation can occur under rather general conditions. We confirm it by applying our formalism to a simple model.Comment: 4 pages, 2 figure
    corecore