While the optical properties of thin metal films are well understood in the
visible and near-infrared range, little has been done in the mid- and
far-infrared region. Here we investigate ultra-thin gold films prepared on
Si(111)(7 x 7) in UHV by measuring in the frequency range between 500 cm-1 and
7000 cm-1 and for temperatures between 300 K and 5 K. The nominal thickness of
the gold layers ranges between one monolayer and 9 nm. The frequency and
temperature dependences of the thicker films can be well described by the Drude
model of a metal, when taking into account classical size effects due to
surface scattering. The films below the percolation threshold exhibit a
non-metallic behavior: the reflection increases with frequency and decreases
with temperature. The frequency dependence can partly be described by a
generalized Drude model. The temperature dependence does not follow a simple
activation process. For monolayers we observe a transition between surface
states around 1100 cm-1.Comment: 7 pages, 10 figure