4,789 research outputs found

    A Power Cap Oriented Time Warp Architecture

    Get PDF
    Controlling power usage has become a core objective in modern computing platforms. In this article we present an innovative Time Warp architecture oriented to efficiently run parallel simulations under a power cap. Our architectural organization considers power usage as a foundational design principle, as opposed to classical power-unaware Time Warp design. We provide early experimental results showing the potential of our proposal

    Computational intelligence based architecture for cognitive agents

    Get PDF
    AbstractWe discuss some limitations of reflexive agents to motivate the need to develop cognitive agents and propose a hierarchical, layered, architecture for cognitive agents. Our examples often involve the discussion of cognitive agents in highway traffic models. A cognitive agent is an agent capable of performing cognitive acts, i.e. a sequence of the following activities: “Perceiving” information in the environment and provided by other agents, “Reasoning” about this information using existing knowledge, “Judging” the obtained information using existing knowledge, “Responding” to other cognitive agents or to the external environment, as it may be required, and “Learning”, i.e. changing (and, hopefully augmenting) the existing knowledge if the newly acquired information allows it. We describe how computational intelligence techniques (e.g., fuzzy logic, neural networks, genetic algorithms, etc) allow mimicking to a certain extent the cognitive acts performed by human beings. The order with which the cognitive actions take place is important and so is the order with which the various computational intelligence techniques are applied. We believe that a hierarchical layered model should be defined for the generic cognitive agents in a style akin to the hierarchical OSI 7 layer model used in data communication. We outline in broad sense such a reference model

    Reduced statistical fluctuations of the position of an object partitioning in two its environment

    Get PDF
    Through hard‐disk simulations and theoretical considerations on the movement of an object that partitions a microtubule filled with small particles, we find that the vibrations typical of thermal equilibrium are reached after a time that increases exponentially with the number of particles involved. The result is a mechanism capable of breaching, on accessible time scales, the ergodic constraints in nano‐scale systems

    Three-dimensional optical beam propagation and solitons in photorefractive crystals

    Get PDF
    The model equations for beam propagation in photorefractive material are simplified under appropriate conditions. The possibility of obtaining bright and dark screening soliton solutions in 2+12+1 dimensions is investigated, and, whenever possible, their amplitude–size relation is displayed

    On power capping and performance optimization of multithreaded applications

    Get PDF
    Multi-threaded applications facilitate the exploitation of the computing power of multicore architectures. On the other hand, these applications can become extremely energy-intensive, in contrast with the need for limiting the energy usage of computing systems. In this article, we explore the design of techniques enabling multi-threaded applications to maximize their performance under a power cap. We consider two control parameters: the number of cores used by the application, and the core power state. We target the design of an auto-tuning power-capping technique with minimal intrusiveness and high portability, which is agnostic about the workload profile of the application. We investigate two different approaches for building the strategy for selecting the best configuration of the parameters under control, namely a heuristic approach and a model-based approach. Through an extensive experimental study, we evaluate the effectiveness of the proposed technique considering two different selection strategies, and we compare them with existing solutions

    Unexpected discovery of surgical gauze during a robotic radical prostatectomy identified as a capturing lymph node on magnetic resonance

    Get PDF
    Multiparametric magnetic resonance, plays a crucial role in several steps of the management of prostate cancer. Various factors could alter the interpretation and reduce the accuracy of MR. Among these the group of the retained surgical items, can produce serious implications for the health of patient, as well as medical-legal consequences. Here we report the case of a patient, with a prostate tumor, who performed a mp-MRI of the prostate, where it was reported as collateral finding, compatible thesis with lymphadenopathy. During robotic assisted radical prostatectomy, was found a gauze, which persisted asymptomatic, retained after a previous right inguinal hernioplast

    Interventions to Decrease Carotid-Intima Media Thickness in Children and Adolescents With Type 1 Diabetes: A Systematic Review and Meta-Analysis.

    Get PDF
    INTRODUCTION Hyperglycemia is associated with a higher cardiovascular risk, as evidenced by increased carotid-intima media thickness (CIMT) in youth with diabetes. We conducted a systematic review and meta-analysis to assess the effect of pharmacological or non-pharmacological interventions on CIMT in children and adolescents with prediabetes or diabetes. METHODS We conducted systematic searches of MEDLINE, EMBASE, and CENTRAL, together with supplementary searches in trial registers and other sources for studies completed up to September 2019. Interventional studies assessing ultrasound CIMT in children and adolescents with prediabetes or diabetes were considered for inclusion. Where appropriate, data were pooled across studies using random-effect meta-analysis. Quality was assessed using The Cochrane Collaboration's risk-of-bias tool and a CIMT reliability tool. RESULTS Six studies involving 644 children with type 1 diabetes mellitus were included. No study involved children with prediabetes or type 2 diabetes. Three randomized controlled trials (RCTs) evaluated the effects of metformin, quinapril, and atorvastatin. Three non-randomized studies, with a before-and-after design, evaluated the effects of physical exercise and continuous subcutaneous insulin infusion (CSII). The mean CIMT at baseline ranged from 0.40 to 0.51 mm. The pooled difference in CIMT was -0.01 mm (95% CI: -0.04 to 0.01) for metformin compared to placebo (2 studies; 135 participants; I2: 0%). The difference in CIMT was -0.01 mm (95% CI: -0.03 to 0.01) for quinapril compared to placebo (1 study; 406 participants). The mean change from baseline in CIMT was -0.03 mm (95% CI: -0.14 to 0.08) after physical exercise (1 study; 7 participants). Inconsistent results were reported for CSII or for atorvastatin. CIMT measurement was rated at a higher quality on all reliability domains in 3 (50%) studies. The confidence in results is limited by the low number of RCTs and their small sample sizes, as well as the high risk of bias in before-and-after studies. CONCLUSIONS Some pharmacological interventions may decrease CIMT in children with type 1 diabetes. However, there is great uncertainty with respect to their effects and no strong conclusions can be drawn. Further evidence from larger RCTs is required. SYSTEMATIC REVIEW REGISTRATION PROSPERO, CRD42017075169

    Low affinity PEGylated hemoglobin from Trematomus bernacchii, a model for hemoglobin-based blood substitutes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conjugation of human and animal hemoglobins with polyethylene glycol has been widely explored as a means to develop blood substitutes, a novel pharmaceutical class to be used in surgery or emergency medicine. However, PEGylation of human hemoglobin led to products with significantly different oxygen binding properties with respect to the unmodified tetramer and high NO dioxygenase reactivity, known causes of toxicity. These recent findings call for the biotechnological development of stable, low-affinity PEGylated hemoglobins with low NO dioxygenase reactivity.</p> <p>Results</p> <p>To investigate the effects of PEGylation on protein structure and function, we compared the PEGylation products of human hemoglobin and <it>Trematomus bernacchii </it>hemoglobin, a natural variant endowed with a remarkably low oxygen affinity and high tetramer stability. We show that extension arm facilitated PEGylation chemistry based on the reaction of <it>T. bernacchii </it>hemoglobin with 2-iminothiolane and maleimido-functionalyzed polyethylene glycol (MW 5000 Da) leads to a tetraPEGylated product, more homogeneous than the corresponding derivative of human hemoglobin. PEGylated <it>T. bernacchii </it>hemoglobin largely retains the low affinity of the unmodified tetramer, with a p50 50 times higher than PEGylated human hemoglobin. Moreover, it is still sensitive to protons and the allosteric effector ATP, indicating the retention of allosteric regulation. It is also 10-fold less reactive towards nitrogen monoxide than PEGylated human hemoglobin.</p> <p>Conclusions</p> <p>These results indicate that PEGylated hemoglobins, provided that a suitable starting hemoglobin variant is chosen, can cover a wide range of oxygen-binding properties, potentially meeting the functional requirements of blood substitutes in terms of oxygen affinity, tetramer stability and NO dioxygenase reactivity.</p

    Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part I

    Get PDF
    The challenging severity of some infections, especially in critically ill patients, makes the diffusion of antimicrobial drugs within tissues one of the cornerstones of chemotherapy. The knowledge of how antibacterial agents penetrate tissues may come from different sources: preclin- ical studies in animal models, phase I–III clinical trials and post-registration studies. However, the particular physiopathology of critically ill patients may significantly alter drug pharmacokinetics. Indeed, changes in interstitial volumes (the third space) and/or in glomerular filtration ratio may influence the achievement of bactericidal concentrations in peripheral compartments, while inflam- mation can alter the systemic distribution of some drugs. On the contrary, other antibacterial agents may reach high and effective concentrations thanks to the increased tissue accumulation of macro- phages and neutrophils. Therefore, the present review explores the tissue distribution of beta-lac- tams and other antimicrobials acting on the cell wall and cytoplasmic membrane of bacteria in crit- ically ill patients. A systematic search of articles was performed according to PRISMA guidelines, and tissue/plasma penetration ratios were collected. Results showed a highly variable passage of drugs within tissues, while large interindividual variability may represent a hurdle which must be overcome to achieve therapeutic concentrations in some compartments. To solve that issue, off-label dosing regimens could represent an effective solution in particular conditions
    • 

    corecore