4,050 research outputs found

    Random Measurable Sets and Covariogram Realisability Problems

    Get PDF
    We provide a characterization of the realisable set covariograms, bringing a rigorous yet abstract solution to the S_2S\_2 problem in materials science. Our method is based on the covariogram functional for random mesurable sets (RAMS) and on a result about the representation of positive operators in a locally compact space. RAMS are an alternative to the classical random closed sets in stochastic geometry and geostatistics, they provide a weaker framework allowing to manipulate more irregular functionals, such as the perimeter. We therefore use the illustration provided by the S_2S\_{2} problem to advocate the use of RAMS for solving theoretical problems of geometric nature. Along the way, we extend the theory of random measurable sets, and in particular the local approximation of the perimeter by local covariograms.Comment: 35p

    O palanque da grande imprensa escrita brasileira: os editoriais e os posicionamentos politico-ideológicos

    Get PDF
    Este trabalho observa como e com que intensidade se manifestam os posicionamentos político-ideológicos da grande imprensa escrita brasileira através de uma análise do discurso de seus editoriais. A partir dos resultados obtidos, que revelam o comprometimento do sujeito imprensa com determinada percepção de mundo social vinculada ao modelo capitalista de sociedade, discute alguns dos impactos sobre a prática jornalística derivados dessa constatação

    Provably Secure and Practical Quantum Key Distribution over 307 km of Optical Fibre

    Full text link
    Proposed in 1984, quantum key distribution (QKD) allows two users to exchange provably secure keys via a potentially insecure quantum channel. Since then, QKD has attracted much attention and significant progress has been made in both theory and practice. On the application front, however, the operating distance of practical fibre-based QKD systems is limited to about 150 km, which is mainly due to the high background noise produced by commonly used semiconductor single-photon detectors (SPDs) and the stringent demand on the minimum classical- post-processing (CPP) block size. Here, we present a compact and autonomous QKD system that is capable of distributing provably-secure cryptographic key over 307 km of ultra-low-loss optical fibre (51.9 dB loss). The system is based on a recently developed standard semiconductor (inGaAs) SPDs with record low background noise and a novel efficient finite-key security analysis for QKD. This demonstrates the feasibility of practical long-distance QKD based on standard fibre optic telecom components.Comment: 6+7 pages, 3 figure

    New model Hamiltonians for improved orbital basis set convergence

    Get PDF
    The standard approach in quantum chemistry is to expand the eigenfunctions of the non relativistic Born Oppenheimer Hamiltonian in terms of Slater determinants. The quality improvements of such wavefunctions in terms of the underlying one electron basis is frustratingly slow. The error in the correlation energy decreases only with L 3 where L is the maximum angular momentum present in the basis. The integral evaluation effort that grows with 0(N4) prevents the use of ever larger bases for obtaining more accurate results. Most of the developments are therefore focused on wavefunction models with explicit correlation to get faster convergence. Although highly successful these approaches are computationally very demanding. A different solution might be provided by constructing new operators which take care of the information loss introduced by truncating the basis. In this thesis different routes towards such new operators are investigated.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Active Testing for Face Detection and Localization

    Get PDF
    We provide a novel search technique which uses a hierarchical model and a mutual information gain heuristic to efficiently prune the search space when localizing faces in images. We show exponential gains in computation over traditional sliding window approaches, while keeping similar performance levels

    Modelling of fatigue damage in aluminum cylinder heads

    No full text
    International audienceCar manufacturers are very much concerned with thermal fatigue ....

    New model Hamiltonians for improved orbital basis set convergence

    Get PDF
    The standard approach in quantum chemistry is to expand the eigenfunctions of the non relativistic Born Oppenheimer Hamiltonian in terms of Slater determinants. The quality improvements of such wavefunctions in terms of the underlying one electron basis is frustratingly slow. The error in the correlation energy decreases only with L 3 where L is the maximum angular momentum present in the basis. The integral evaluation effort that grows with 0(N4) prevents the use of ever larger bases for obtaining more accurate results. Most of the developments are therefore focused on wavefunction models with explicit correlation to get faster convergence. Although highly successful these approaches are computationally very demanding. A different solution might be provided by constructing new operators which take care of the information loss introduced by truncating the basis. In this thesis different routes towards such new operators are investigated
    corecore