114 research outputs found

    Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation

    Full text link
    The properties of the Volume operator in Loop Quantum Gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. The present analysis benefits from the general simplified formula for matrix elements of the Volume operator derived in gr-qc/0405060, making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to arXiv:0706.0469, providing details of the analysis presented there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008. More compact presentation. Sign factor combinatorics now much better understood in context of oriented matroids, see arXiv:1003.2348, where also important remarks given regarding sigma configurations. Subsequent computations revealed some minor errors, which do not change qualitative results but modify some numbers presented her

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    Degenerate Configurations, Singularities and the Non-Abelian Nature of Loop Quantum Gravity

    Full text link
    Degenerate geometrical configurations in quantum gravity are important to understand if the fate of classical singularities is to be revealed. However, not all degenerate configurations arise on an equal footing, and one must take into account dynamical aspects when interpreting results: While there are many degenerate spatial metrics, not all of them are approached along the dynamical evolution of general relativity or a candidate theory for quantum gravity. For loop quantum gravity, relevant properties and steps in an analysis are summarized and evaluated critically with the currently available information, also elucidating the role of degrees of freedom captured in the sector provided by loop quantum cosmology. This allows an outlook on how singularity removal might be analyzed in a general setting and also in the full theory. The general mechanism of loop quantum cosmology will be shown to be insensitive to recently observed unbounded behavior of inverse volume in the full theory. Moreover, significant features of this unboundedness are not a consequence of inhomogeneities but of non-Abelian effects which can also be included in homogeneous models.Comment: 28 pages, 1 figure; v2: extended discussion of singularity removal and summar

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    On (Cosmological) Singularity Avoidance in Loop Quantum Gravity

    Full text link
    Loop Quantum Cosmology (LQC), mainly due to Bojowald, is not the cosmological sector of Loop Quantum Gravity (LQG). Rather, LQC consists of a truncation of the phase space of classical General Relativity to spatially homogeneous situations which is then quantized by the methods of LQG. Thus, LQC is a quantum mechanical toy model (finite number of degrees of freedom) for LQG(a genuine QFT with an infinite number of degrees of freedom) which provides important consistency checks. However, it is a non trivial question whether the predictions of LQC are robust after switching on the inhomogeneous fluctuations present in full LQG. Two of the most spectacular findings of LQC are that 1. the inverse scale factor is bounded from above on zero volume eigenstates which hints at the avoidance of the local curvature singularity and 2. that the Quantum Einstein Equations are non -- singular which hints at the avoidance of the global initial singularity. We display the result of a calculation for LQG which proves that the (analogon of the) inverse scale factor, while densely defined, is {\it not} bounded from above on zero volume eigenstates. Thus, in full LQG, if curvature singularity avoidance is realized, then not in this simple way. In fact, it turns out that the boundedness of the inverse scale factor is neither necessary nor sufficient for curvature singularity avoidance and that non -- singular evolution equations are neither necessary nor sufficient for initial singularity avoidance because none of these criteria are formulated in terms of observable quantities.After outlining what would be required, we present the results of a calculation for LQG which could be a first indication that our criteria at least for curvature singularity avoidance are satisfied in LQG.Comment: 34 pages, 16 figure

    Effective State Metamorphosis in Semi-Classical Loop Quantum Cosmology

    Get PDF
    Modification to the behavior of geometrical density at short scales is a key result of loop quantum cosmology, responsible for an interesting phenomenology in the very early universe. We demonstrate the way matter with arbitrary scale factor dependence in Hamiltonian incorporates this change in its effective dynamics in the loop modified phase. For generic matter, the equation of state starts varying near a critical scale factor, becomes negative below it and violates strong energy condition. This opens a new avenue to generalize various phenomenological applications in loop quantum cosmology. We show that different ways to define energy density may yield radically different results, especially for the case corresponding to classical dust. We also discuss implications for frequency dispersion induced by modification to geometric density at small scales.Comment: Revised version; includes expanded discussion of natural trans-Planckian modifications to frequency dispersion and robustness to quantization ambiguities. To appear in Class. Quant. Gra

    Semiclassical Mechanics of the Wigner 6j-Symbol

    Full text link
    The semiclassical mechanics of the Wigner 6j-symbol is examined from the standpoint of WKB theory for multidimensional, integrable systems, to explore the geometrical issues surrounding the Ponzano-Regge formula. The relations among the methods of Roberts and others for deriving the Ponzano-Regge formula are discussed, and a new approach, based on the recoupling of four angular momenta, is presented. A generalization of the Yutsis-type of spin network is developed for this purpose. Special attention is devoted to symplectic reduction, the reduced phase space of the 6j-symbol (the 2-sphere of Kapovich and Millson), and the reduction of Poisson bracket expressions for semiclassical amplitudes. General principles for the semiclassical study of arbitrary spin networks are laid down; some of these were used in our recent derivation of the asymptotic formula for the Wigner 9j-symbol.Comment: 64 pages, 50 figure

    Reconstructing Quantum Geometry from Quantum Information: Spin Networks as Harmonic Oscillators

    Full text link
    Loop Quantum Gravity defines the quantum states of space geometry as spin networks and describes their evolution in time. We reformulate spin networks in terms of harmonic oscillators and show how the holographic degrees of freedom of the theory are described as matrix models. This allow us to make a link with non-commutative geometry and to look at the issue of the semi-classical limit of LQG from a new perspective. This work is thought as part of a bigger project of describing quantum geometry in quantum information terms.Comment: 16 pages, revtex, 3 figure

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde
    • …
    corecore