114 research outputs found
Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation
The properties of the Volume operator in Loop Quantum Gravity, as constructed
by Ashtekar and Lewandowski, are analyzed for the first time at generic
vertices of valence greater than four. The present analysis benefits from the
general simplified formula for matrix elements of the Volume operator derived
in gr-qc/0405060, making it feasible to implement it on a computer as a matrix
which is then diagonalized numerically. The resulting eigenvalues serve as a
database to investigate the spectral properties of the volume operator.
Analytical results on the spectrum at 4-valent vertices are included. This is a
companion paper to arXiv:0706.0469, providing details of the analysis presented
there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008.
More compact presentation. Sign factor combinatorics now much better
understood in context of oriented matroids, see arXiv:1003.2348, where also
important remarks given regarding sigma configurations. Subsequent
computations revealed some minor errors, which do not change qualitative
results but modify some numbers presented her
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity
We analyze combinatorial structures which play a central role in determining
spectral properties of the volume operator in loop quantum gravity (LQG). These
structures encode geometrical information of the embedding of arbitrary valence
vertices of a graph in 3-dimensional Riemannian space, and can be represented
by sign strings containing relative orientations of embedded edges. We
demonstrate that these signature factors are a special representation of the
general mathematical concept of an oriented matroid. Moreover, we show that
oriented matroids can also be used to describe the topology (connectedness) of
directed graphs. Hence the mathematical methods developed for oriented matroids
can be applied to the difficult combinatorics of embedded graphs underlying the
construction of LQG. As a first application we revisit the analysis of [4-5],
and find that enumeration of all possible sign configurations used there is
equivalent to enumerating all realizable oriented matroids of rank 3, and thus
can be greatly simplified. We find that for 7-valent vertices having no
coplanar triples of edge tangents, the smallest non-zero eigenvalue of the
volume spectrum does not grow as one increases the maximum spin \jmax at the
vertex, for any orientation of the edge tangents. This indicates that, in
contrast to the area operator, considering large \jmax does not necessarily
imply large volume eigenvalues. In addition we give an outlook to possible
starting points for rewriting the combinatorics of LQG in terms of oriented
matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos
corrected, presentation slightly extende
Degenerate Configurations, Singularities and the Non-Abelian Nature of Loop Quantum Gravity
Degenerate geometrical configurations in quantum gravity are important to
understand if the fate of classical singularities is to be revealed. However,
not all degenerate configurations arise on an equal footing, and one must take
into account dynamical aspects when interpreting results: While there are many
degenerate spatial metrics, not all of them are approached along the dynamical
evolution of general relativity or a candidate theory for quantum gravity. For
loop quantum gravity, relevant properties and steps in an analysis are
summarized and evaluated critically with the currently available information,
also elucidating the role of degrees of freedom captured in the sector provided
by loop quantum cosmology. This allows an outlook on how singularity removal
might be analyzed in a general setting and also in the full theory. The general
mechanism of loop quantum cosmology will be shown to be insensitive to recently
observed unbounded behavior of inverse volume in the full theory. Moreover,
significant features of this unboundedness are not a consequence of
inhomogeneities but of non-Abelian effects which can also be included in
homogeneous models.Comment: 28 pages, 1 figure; v2: extended discussion of singularity removal
and summar
From the discrete to the continuous - towards a cylindrically consistent dynamics
Discrete models usually represent approximations to continuum physics.
Cylindrical consistency provides a framework in which discretizations mirror
exactly the continuum limit. Being a standard tool for the kinematics of loop
quantum gravity we propose a coarse graining procedure that aims at
constructing a cylindrically consistent dynamics in the form of transition
amplitudes and Hamilton's principal functions. The coarse graining procedure,
which is motivated by tensor network renormalization methods, provides a
systematic approximation scheme towards this end. A crucial role in this coarse
graining scheme is played by embedding maps that allow the interpretation of
discrete boundary data as continuum configurations. These embedding maps should
be selected according to the dynamics of the system, as a choice of embedding
maps will determine a truncation of the renormalization flow.Comment: 22 page
On (Cosmological) Singularity Avoidance in Loop Quantum Gravity
Loop Quantum Cosmology (LQC), mainly due to Bojowald, is not the cosmological
sector of Loop Quantum Gravity (LQG). Rather, LQC consists of a truncation of
the phase space of classical General Relativity to spatially homogeneous
situations which is then quantized by the methods of LQG. Thus, LQC is a
quantum mechanical toy model (finite number of degrees of freedom) for LQG(a
genuine QFT with an infinite number of degrees of freedom) which provides
important consistency checks. However, it is a non trivial question whether the
predictions of LQC are robust after switching on the inhomogeneous fluctuations
present in full LQG. Two of the most spectacular findings of LQC are that 1.
the inverse scale factor is bounded from above on zero volume eigenstates which
hints at the avoidance of the local curvature singularity and 2. that the
Quantum Einstein Equations are non -- singular which hints at the avoidance of
the global initial singularity. We display the result of a calculation for LQG
which proves that the (analogon of the) inverse scale factor, while densely
defined, is {\it not} bounded from above on zero volume eigenstates. Thus, in
full LQG, if curvature singularity avoidance is realized, then not in this
simple way. In fact, it turns out that the boundedness of the inverse scale
factor is neither necessary nor sufficient for curvature singularity avoidance
and that non -- singular evolution equations are neither necessary nor
sufficient for initial singularity avoidance because none of these criteria are
formulated in terms of observable quantities.After outlining what would be
required, we present the results of a calculation for LQG which could be a
first indication that our criteria at least for curvature singularity avoidance
are satisfied in LQG.Comment: 34 pages, 16 figure
Effective State Metamorphosis in Semi-Classical Loop Quantum Cosmology
Modification to the behavior of geometrical density at short scales is a key
result of loop quantum cosmology, responsible for an interesting phenomenology
in the very early universe. We demonstrate the way matter with arbitrary scale
factor dependence in Hamiltonian incorporates this change in its effective
dynamics in the loop modified phase. For generic matter, the equation of state
starts varying near a critical scale factor, becomes negative below it and
violates strong energy condition. This opens a new avenue to generalize various
phenomenological applications in loop quantum cosmology. We show that different
ways to define energy density may yield radically different results, especially
for the case corresponding to classical dust. We also discuss implications for
frequency dispersion induced by modification to geometric density at small
scales.Comment: Revised version; includes expanded discussion of natural
trans-Planckian modifications to frequency dispersion and robustness to
quantization ambiguities. To appear in Class. Quant. Gra
Semiclassical Mechanics of the Wigner 6j-Symbol
The semiclassical mechanics of the Wigner 6j-symbol is examined from the
standpoint of WKB theory for multidimensional, integrable systems, to explore
the geometrical issues surrounding the Ponzano-Regge formula. The relations
among the methods of Roberts and others for deriving the Ponzano-Regge formula
are discussed, and a new approach, based on the recoupling of four angular
momenta, is presented. A generalization of the Yutsis-type of spin network is
developed for this purpose. Special attention is devoted to symplectic
reduction, the reduced phase space of the 6j-symbol (the 2-sphere of Kapovich
and Millson), and the reduction of Poisson bracket expressions for
semiclassical amplitudes. General principles for the semiclassical study of
arbitrary spin networks are laid down; some of these were used in our recent
derivation of the asymptotic formula for the Wigner 9j-symbol.Comment: 64 pages, 50 figure
Reconstructing Quantum Geometry from Quantum Information: Spin Networks as Harmonic Oscillators
Loop Quantum Gravity defines the quantum states of space geometry as spin
networks and describes their evolution in time. We reformulate spin networks in
terms of harmonic oscillators and show how the holographic degrees of freedom
of the theory are described as matrix models. This allow us to make a link with
non-commutative geometry and to look at the issue of the semi-classical limit
of LQG from a new perspective. This work is thought as part of a bigger project
of describing quantum geometry in quantum information terms.Comment: 16 pages, revtex, 3 figure
Loop Quantum Cosmology: A Status Report
The goal of this article is to provide an overview of the current state of
the art in loop quantum cosmology for three sets of audiences: young
researchers interested in entering this area; the quantum gravity community in
general; and, cosmologists who wish to apply loop quantum cosmology to probe
modifications in the standard paradigm of the early universe. An effort has
been made to streamline the material so that, as described at the end of
section I, each of these communities can read only the sections they are most
interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical
and Quantum Gravity. Typos corrected, clarifications and references adde
- …