10 research outputs found

    Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strain-balance technology

    Get PDF
    Research into the formation of InAs quantum dots (QDs) in GaAs using the metalorganic vapor phase epitaxy technique ispresented. This technique is deemed to be cheaper than the more often used and studied molecular beam epitaxy. The bestconditions for obtaining a high photoluminescence response, indicating a good material quality, have been found among awide range of possibilities. Solar cells with an excellent quantum ef?ciency have been obtained, with a sub-bandgapphoto-response of 0.07 mA/cm2per QD layer, the highest achieved so far with the InAs/GaAs system, proving the potentialof this technology to be able to increase the ef?ciency of lattice-matched multi-junction solar cells and contributing to abetter understanding of QD technology toward the achievement of practical intermediate-band solar cells

    Modification of the Structural, Microstructural, and Elastoplastic Properties of Aluminum Wires after Operation

    No full text
    The health of the components that make up the cables of power lines, and hence their service life, is governed at the micro level by changes in their structure and microstructure. In this paper, the structure and microstructure of aluminum wires of overhead power transmission lines (without a steel core) of different service life from 0 to 62 years have been investigated by quantitative techniques of X-ray diffraction, diffraction of back-scattered electrons, and the densitometric method. Elastoplastic properties of the wires have been tested by the acoustic-resonance method. A decrease in the Al material density Δρ/ρ∼−0.165% was found in the near-surface layer of ∼36 μm depth and in the bulk of the wires with an increase in the service life from 0 to 18 years. The density decrease is associated with the accumulation of microcracks. The following density increase (Δρ/ρ∼−0.06%) in wires with a service life of 62 years is attributed to the formation of ∼0.7 vol.% of crystalline Al oxides in the near-surface layers of the wires. The nature of the change in the elastic modulus, microplastic flow stress, and decrement indicates complex structural changes correlating with the results obtained by diffraction methods

    The Structure of the Near-Surface Layer of the AAAC Overhead Power Line Wires after Operation and Its Effect on Their Elastic, Microplastic, and Electroresistance Properties

    No full text
    Overhead power-transmission lines are one of the most important components of modern infrastructure. Their service life is determined by the state of the near-surface defect layers (NSDLs) of wires constituting these lines. Both the structure and microstructure of the NSDLs of wires of the AAAC type (All Aluminum Alloy Conductor), which were in operation during 0 (new) to 62 years, were investigated by methods of the X-ray (XRD) and electron back-scattering diffraction, optical microscopy, and resistivity measurements, as well as by means of densitometric and acoustic measurements with layer-by-layer removal of the near-surface material by etching. Two characteristic thicknesses of the NSDLs were obtained, different methods providing close results, namely, ~30–50 μm and ~56–140 μm. According to the mass-density distribution (XRD), these characteristic thicknesses correspond to the depths from the surface where they occur, respectively, ~70% and ~99% of the density drop in comparison with the bulk density value. The rate of increase in NSDL thickness is ~4 μm/year in the interval from 0 to 18 years. Results of investigation of elastic and microplastic properties of wires after removal of ~35 μm of the upper layer are also presented

    Comparison of Structural, Microstructural, Elastic, and Microplastic Properties of the AAAC (A50) and ACSR (AC50/8) Cables after Various Operation Periods in Power Transmission Lines

    No full text
    In modern economic infrastructure, Al cables of overhead power transmission lines are used both without and with a steel core (respectively, all aluminum alloy conductor (AAAC) and aluminum conductor steel reinforced (ACSR) cables). In this article, the changes in structural, microstructural, and elastic-microplastic properties have been analyzed for the outer wires of the AAAC (A50) and ACSR cables (AC50/8 cables with a steel core of ~8 mm2 cross-section, hereinafter referred to as AC50) with the cross-section of the stranded conductor of ~50 mm2, which were in operation for 0–20 years in the Volgograd region of Russia. Using the techniques of X-ray diffraction, electron backscattered diffraction, densitometry, and the acoustic method, the structural and microstructural features of the wires have been compared and found to be correlated with their elastic-microplastic properties. It has been ascertained that the presence of a steel core in AC50 leads to a decrease in the defectiveness of the near-surface layer of their aluminum wires. Compared with A50 cables, the development of void defects in the near-surface layer of Al-wires of AC50 cables slows down (by ~1 year with a service life of ~10 years and by ~3 years with a service life of ~20 years)

    Comparison of Structural, Microstructural, Elastic, and Microplastic Properties of the AAAC (A50) and ACSR (AC50/8) Cables after Various Operation Periods in Power Transmission Lines

    No full text
    In modern economic infrastructure, Al cables of overhead power transmission lines are used both without and with a steel core (respectively, all aluminum alloy conductor (AAAC) and aluminum conductor steel reinforced (ACSR) cables). In this article, the changes in structural, microstructural, and elastic-microplastic properties have been analyzed for the outer wires of the AAAC (A50) and ACSR cables (AC50/8 cables with a steel core of ~8 mm2 cross-section, hereinafter referred to as AC50) with the cross-section of the stranded conductor of ~50 mm2, which were in operation for 0–20 years in the Volgograd region of Russia. Using the techniques of X-ray diffraction, electron backscattered diffraction, densitometry, and the acoustic method, the structural and microstructural features of the wires have been compared and found to be correlated with their elastic-microplastic properties. It has been ascertained that the presence of a steel core in AC50 leads to a decrease in the defectiveness of the near-surface layer of their aluminum wires. Compared with A50 cables, the development of void defects in the near-surface layer of Al-wires of AC50 cables slows down (by ~1 year with a service life of ~10 years and by ~3 years with a service life of ~20 years)

    The Structure of the Near-Surface Layer of the AAAC Overhead Power Line Wires after Operation and Its Effect on Their Elastic, Microplastic, and Electroresistance Properties

    No full text
    Overhead power-transmission lines are one of the most important components of modern infrastructure. Their service life is determined by the state of the near-surface defect layers (NSDLs) of wires constituting these lines. Both the structure and microstructure of the NSDLs of wires of the AAAC type (All Aluminum Alloy Conductor), which were in operation during 0 (new) to 62 years, were investigated by methods of the X-ray (XRD) and electron back-scattering diffraction, optical microscopy, and resistivity measurements, as well as by means of densitometric and acoustic measurements with layer-by-layer removal of the near-surface material by etching. Two characteristic thicknesses of the NSDLs were obtained, different methods providing close results, namely, ~30–50 μm and ~56–140 μm. According to the mass-density distribution (XRD), these characteristic thicknesses correspond to the depths from the surface where they occur, respectively, ~70% and ~99% of the density drop in comparison with the bulk density value. The rate of increase in NSDL thickness is ~4 μm/year in the interval from 0 to 18 years. Results of investigation of elastic and microplastic properties of wires after removal of ~35 μm of the upper layer are also presented

    Characteristics of Wires of the Long-Operated Aluminum-Steel Cable at Different Places on an Overhead Power Line Span

    No full text
    During operation, cables of overhead power lines (OPLs) are exposed to the impact that differs in separate parts of the OPL span due to the different responses of cables near the clamps and far from them. This paper presents the results of a study of aluminum and steel wires cut from such separate parts of ACSR cables before and after exploitation. Structural, microstructural, and elastic–microplastic properties of wires and their changes during operation were studied through optical microscopy, energy-dispersive X-ray microanalysis, electron backscattering diffraction, X-ray diffraction, densitometry, and acoustic measurements. The characteristics of the properties of the wires along the span were found to change in a coordinated manner. Numerical estimates of the influence of the steel core on aging the ACSR cable were obtained. Changes in the properties of the wires, as well as oxidization and corrosion of their near-surface layers, were studied in detail. Quantitative values of the characteristics of properties, the most distant from those observed in the new wires, were revealed for samples of aluminum and steel wires cut from the cable at 1/4 span and near clamps. It is assumed that these cable parts should be the most crucial for cable durability

    Large-Scale Laser Fabrication of Antifouling Silicon-Surface Nanosheet Arrays via Nanoplasmonic Ablative Self-Organization in Liquid CS<sub>2</sub> Tracked by a Sulfur Dopant

    No full text
    Large-scale surface nanopatterning of a commercial silicon (Si) wafer in the form of regular 1D arrays of high-aspect-ratio vertical nanosheets (NSs) for antifouling and other potential promising optoelectronic, nanophotonic, and sensing applications was performed via multishot picosecond IR-laser ablation under a 5-mm-thick carbon disulfide liquid layer. Specifically, the nanopatterned surface layer demonstrates the broad ultralow mid-IR transmittance and the high content of sulfur, carbon, and even oxygen in the modified submicron-thick top layer, preventing the appearance of a <i>Staphylococcus aureus</i> bacterial biofilm. High-resolution transmission electron microscopy studies exhibit the anticorrelating inner versus outer surface abundance of donor sulfur versus adverse carbon and oxygen components and the amorphous structure of the sulfur-hyperdoped NSs atop their crystalline basements. These NSs indicate their appearance via the interfacial vapor/plume bubble-mediated codeposition of Si ablation nanoplumes from the regular trenches and sulfur-containing products of carbon disulfide decomposition in the bubble. Numerical modeling indicates the nanoplasmonic origin of the Si NSs, self-limited in both the 100 nm periods and the submicron heights
    corecore