131 research outputs found

    Development of a blood oxygenation phantom for photoacoustic tomography combined with online pO2 detection and flow spectrometry

    Get PDF
    Photoacoustic tomography (PAT) is intrinsically sensitive to blood oxygen saturation (sO2) in vivo. However, making accurate sO2 measurements without knowledge of tissue- and instrumentation-related correction factors is extremely challenging. We have developed a low-cost flow phantom to facilitate validation of PAT systems. The phantom is composed of a flow circuit of tubing partially embedded within a tissue-mimicking material, with independent sensors providing online monitoring of the optical absorption spectrum and partial pressure of oxygen in the tube. We first test the flow phantom using two small molecule dyes that are frequently used for photoacoustic imaging: methylene blue and indocyanine green. We then demonstrate the potential of the phantom for evaluating sO2 using chemical oxygenation and deoxygenation of blood in the circuit. Using this dynamic assessment of the photoacoustic sO2 measurement in phantoms in relation to a ground truth, we explore the influence of multispectral processing and spectral coloring on accurate assessment of sO2. Future studies could exploit this low-cost dynamic flow phantom to validate fluence correction algorithms and explore additional blood parameters such as pH and also absorptive and other properties of different fluids

    Evaluation of precision in optoacoustic tomography for preclinical imaging in living subjects.

    Get PDF
    Optoacoustic Tomography (OT) is now widely used in preclinical imaging, however, precision (repeatability and reproducibility) of OT has yet to be determined. METHODS: We used a commercial small animal OT system. Measurements in stable phantoms were used to independently assess the impact of system variables on precision (using coefficient of variation, COV), including acquisition wavelength, rotational position, frame averaging. Variables due to animal handling and physiology, such as anatomical placement and anesthesia conditions were then assessed in healthy nude mice using the left kidney and spleen as reference organs. Temporal variation was assessed by repeated measurements over hours and days both in phantoms and inΒ vivo\textit{in vivo}. Sensitivity to small molecule dyes was determined in phantoms and inΒ vivo\textit{in vivo}; precision was assessed inΒ vivo\textit{in vivo} using IRDye800CW. RESULTS: OT COV in a stable phantom was less than 2% across all wavelengths over 30 days. The factors with greatest impact on the signal repeatability in phantoms were rotational position and user experience, both of which still resulted in a COV of less than 4%. Anatomical ROI size showed the highest variation at 12% and 18% COV in the kidney and spleen respectively, however, functional SOβ‚‚ measurements based on a standard operating procedure showed exceptional reproducibility of <4% COV. COV for repeated injections of IRDye800CW was 6.6%. Sources of variability for inΒ vivo\textit{in vivo} data included respiration rate, user experience and animal placement. CONCLUSION: Data acquired with our small animal OT system was highly repeatable and reproducible across subjects and over time. Therefore, longitudinal OT studies may be performed with high confidence when our standard operating procedure is followed.This work was funded by: the EPSRC-CRUK Cancer Imaging Centre in Cambridge and Manchester (C197/A16465); CRUK (C14303/A17197, C47594/A16267); EU-FP7-agreement FP7-PEOPLE-2013-CIG-630729; and the University of Cambridge EPSRC Impact Acceleration Account

    Towards Quantitative Evaluation of Tissue Absorption Coefficients Using Light Fluence Correction in Optoacoustic Tomography.

    Get PDF
    Optoacoustic tomography is a fast developing imaging modality, combining the high contrast available from optical excitation of tissue with the high resolution and penetration depth of ultrasound detection. Light is subject to both absorption and scattering when traveling through tissue; adequate knowledge of tissue optical properties and hence the spatial fluence distribution is required to create an optoacoustic image that is directly proportional to chromophore concentrations at all depths. Using data from a commercial multispectral optoacoustic tomography (MSOT) system, we implemented an iterative optimization for fluence correction based on a finite-element implementation of the delta-Eddington approximation to the Radiative Transfer Equation (RTE). We demonstrate a linear relationship between the image intensity and absorption coefficients across multiple wavelengths and depths in phantoms. We also demonstrate improved feature visibility and spectral recovery at depth in phantoms and with in vivo measurements, suggesting our approach could in the future enable quantitative extraction of tissue absorption coefficients in biological tissue.This work was funded by the EPSRC-CRUK Cancer Imaging Centre in Cambridge and Manchester (C197/A16465); CRUK (C47594/A16267, C14303/A17197); EU FP7 framework programme (FP7-PEOPLE-2013-CIG-630729) and the University of Cambridge EPSRC Impact Acceleration Account via a Partnership Development Award.This is the author accepted manuscript. The final version is available from the Institute of Electrical and Electronics Engineers via http://dx.doi.org/10.1109/TMI.2016.260719

    The Enigmatic (Almost) Dark Galaxy Coma P: Distance Measurement and Stellar Populations from HST Imaging

    Get PDF
    We present Hubble Space Telescope (HST) observations of the low surface brightness (SB) galaxy Coma P. This system was first discovered in the Arecibo Legacy Fast ALFA HI survey and was cataloged as an (almost) dark galaxy because it did not exhibit any obvious optical counterpart in the available survey data (e.g., Sloan Digital Sky Survey). Subsequent WIYN pODI imaging revealed an ultra-low SB stellar component located at the center of the HI detection. We use the HST images to produce a deep color-magnitude diagram (CMD) of the resolved stellar population present in Coma P. We clearly detect a red stellar sequence that we interpret to be a red giant branch, and use it to infer a tip of the red giant branch (TRGB) distance of 5.50βˆ’0.53+0.28^{+0.28}_{-0.53} Mpc. The new distance is substantially lower than earlier estimates and shows that Coma P is an extreme dwarf galaxy. Our derived stellar mass is only 4.3 Γ—\times 105^5 MβŠ™M_\odot, meaning that Coma P has an extreme HI-to-stellar mass ratio of 81. We present a detailed analysis of the galaxy environment within which Coma P resides. We hypothesize that Coma P formed within a local void and has spent most of its lifetime in a low-density environment. Over time, the gravitational attraction of the galaxies located in the void wall has moved it to the edge, where it had a recent "fly-by" interaction with M64. We investigate the possibility that Coma P is at a farther distance and conclude that the available data are best fit by a distance of 5.5 Mpc.Comment: 22 pages, 11 figures. Accepted for publication in the Astronomical Journa

    Evidence to support magnetic resonance conditional labelling of all pacemaker and defibrillator leads in patients with cardiac implantable electronic devices

    Get PDF
    Aims: Many cardiac pacemakers and defibrillators are not approved by regulators for magnetic resonance imaging (MRI). Even following generator exchange to an approved magnetic resonance (MR)-conditional model, many systems remain classified β€˜non-MR conditional’ due to the leads. This classification makes patient access to MRI challenging, but there is no evidence of increased clinical risk. We compared the effect of MRI on non-MR conditional and MR-conditional pacemaker and defibrillator leads. // Methods and results: Patients undergoing clinical 1.5T MRI with pacemakers and defibrillators in three centres over 5 years were included. Magnetic resonance imaging protocols were similar for MR-conditional and non-MR conditional systems. Devices were interrogated pre- and immediately post-scan, and at follow-up, and adverse clinical events recorded. Lead parameter changes peri-scan were stratified by MR-conditional labelling. A total of 1148 MRI examinations were performed in 970 patients (54% non-MR conditional systems, 39% defibrillators, 15% pacing-dependent) with 2268 leads. There were no lead-related adverse clinical events, and no clinically significant immediate or late lead parameter changes following MRI in either MR-conditional or non-MR conditional leads. Small reductions in atrial and right ventricular sensed amplitudes and impedances were similar between groups, with no difference in the proportion of leads with parameter changes greater than pre-defined thresholds (7.1%, 95% confidence interval: 6.1–8.3). // Conclusions: There was no increased risk of MRI in patients with non-MR conditional pacemaker or defibrillator leads when following recommended protocols. Standardizing MR conditions for all leads would significantly improve access to MRI by enabling patients to be scanned in non-specialist centres, with no discernible incremental risk

    Metabolomics to unveil and understand phenotypic diversity between pathogen populations

    Get PDF
    Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Harnessing technology and portability to conduct molecular epidemiology of endemic pathogens in resource-limited settings

    Get PDF
    Improvements in genetic and genomic technology have enabled field-deployable molecular laboratories and these have been deployed in a variety of epidemics that capture headlines. In this editorial, we highlight the importance of building physical and personnel capacity in low and middle income countries to deploy these technologies to improve diagnostics, understand transmission dynamics and provide feedback to endemic communities on actionable timelines. We describe our experiences with molecular field research on schistosomiasis, trypanosomiasis and rabies and urge the wider tropical medicine community to embrace these methods and help build capacity to benefit communities affected by endemic infectious diseases

    Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    Get PDF
    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.ope
    • …
    corecore