1,139 research outputs found
The 13 years of TRMM Lightning Imaging Sensor: From Individual Flash Characteristics to Decadal Tendencies
How often lightning strikes the Earth has been the object of interest and research for decades. Several authors estimated different global flash rates using ground-based instruments, but it has been the satellite era that enabled us to monitor lightning thunderstorm activity on the time and place that lightning exactly occurs. Launched into space as a component of NASA s Tropical Rainfall Measuring Mission (TRMM) satellite, in November 1997, the Lighting Imaging Sensor (LIS) is still operating. LIS detects total lightning (i.e., intracloud and cloud-to-ground) from space in a low-earth orbit (35deg orbit). LIS has collected lightning measurements for 13 years (1998-2010) and here we present a fully revised and current total lightning climatology over the tropics. Our analysis includes the individual flash characteristics (number of events and groups, total radiance, area footprint, etc.), composite climatological maps, and trends for the observed total lightning during these 13 years. We have identified differences in the energetics of the flashes and/or the optical scattering properties of the storms cells due to cell-relative variations in microphysics and kinematics (i.e., convective or stratiform rainfall). On the climatological total lightning maps we found a dependency on the scale of analysis (resolution) in identifying the lightning maximums in the tropics. The analysis of total lightning trends observed by LIS from 1998 to 2010 in different temporal (annual and seasonal) and spatial (large and regional) scales, showed no systematic trends in the median to lower-end of the distributions, but most places in the tropics presented a decrease in the highest total lightning flash rates (higher-end of the distributions)
Structural and functional characterisation of the cytochrome P450 enzyme CYP268A2 from Mycobacterium marinum
Members of the cytochrome P450 monooxygenase family CYP268 are found across a broad range of Mycobacterium species including the pathogens Mycobacterium avium, M. colombiense,M. kansasii and Mmarinum CYP268A2, from M. marinum , which is the first member of this family to be studied, was purified and characterised. CYP268A2 was found to bind a variety of substrates with high affinity, including branched and straight-chain fatty acids (C10-C12), acetate esters, and aromatic compounds. The enzyme was also found to bind phenylimidazole inhibitors but not larger azoles, such as ketoconazole. The monooxygenase activity of CYP268A2 was efficiently reconstituted using heterologous electron transfer partner proteins. CYP268A2 hydroxylated geranyl acetate and tran s-pseudoionone at a terminal methyl group to yield ( 2E,6E )-8-hydroxy-3,7-dimethylocta-2,6-dien-1-yl acetate and ( 3E,5E,9E )-11-hydroxy-6,10-dimethylundeca-3,5,9-trien-2-one, respectively. The X-ray crystal structure of CYP268A2 was solved to a resolution of 2.0 Å with trans-pseudoionone bound in the active site. The overall structure was similar to that of the related phytanic acid monooxygenase CYP124A1 enzyme from Mycobacterium tuberculosis , which shares 41 % sequence identity. The active site is predominantly hydrophobic but includes the Ser99 and Gln209 residues which form hydrogen bonds with the terminal carbonyl group of the pseudoionone. The structure provided an explanation on why CYP268A2 shows a preference for shorter substrates over the longer chain fatty acids which bind to CYP124A1 and the selective nature of the catalysed monooxygenase activity.Stella A. Child, Elise F. Naumann, John B. Bruning and Stephen G. Bel
A Magnetic Transition Probed by the Ce Ion in Square-Lattice Antiferromagnet CeMnAsO
We examined the magnetic properties of the square-lattice antiferromagnets
CeMnAsO and LaMnAsO and their solid solutions La1-xCexMnAsO by resistivity,
magnetic susceptibility, and heat capacity measurements below room temperature.
A first-order phase transition is observed at 34.1 K, below which the
ground-state doublet of the Ce ion splits by 3.53 meV. It is likely that Mn
moments already ordered above room temperature are reoriented at the
transition, as reported for related compounds, such as NdMnAsO and PrMnSbO.
This transition generates a large internal magnetic field at the Ce site in
spite of the fact that simple Heisenberg interactions should be cancelled out
at the Ce site owing to geometrical frustration. The transition takes place at
nearly the same temperature with the substitution of La for Ce up to 90%. The
Ce moment does not undergo long-range order by itself, but is parasitically
induced at the transition, serving as a good probe for detecting the magnetism
of Mn spins in a square lattice.Comment: 11 pages, 5 figures, to be published in J. Phys. Soc. Jp
Recommended from our members
A general technique for characterizing x-ray position sensitive arrays
We present a general statistical technique for characterizing x-ray sensitive linear diode arrays and CCD arrays. We apply this technique to characterize the response of a linear diode array, Princeton Instrument model X-PDA, and a virtual phase CCD array, TI 4849, to direct illumination by x-rays. We find that the response of the linear array is linearly proportional to the incident intensity and uniform over its length to within 2 %. Its quantum efficiency is 38 % for Cu K{sub {alpha}} x-rays. The resolution function is evaluated from the spatial autocorrelation function and falls to 10 % of its peak value after one pixel. On the other hand, the response of the CCD detecting system to direct x-ray exposure is non-linear. To properly quantify the scattered x-rays, one must correct for the non- linearity. The resolution is two pixels along the serial transfer direction. We characterize the noise of the CCD and propose a model that takes into account the non-linearity and the resolution function to estimate the quantum efficiency of the detector. The quantum efficiency is 20 %
Euclidean Approach to the Entropy for a Scalar Field in Rindler-like Space-Times
The off-shell entropy for a massless scalar field in a D-dimensional
Rindler-like space-time is investigated within the conical Euclidean approach
in the manifold C_\be\times\M^N, C_\be being the 2-dimensional cone, making
use of the zeta-function regularisation. Due to the presence of conical
singularities, it is shown that the relation between the zeta-function and the
heat kernel is non trivial and, as first pointed out by Cheeger, requires a
separation between small and large eigenvalues of the Laplace operator. As a
consequence, in the massless case, the (naive) non existence of the Mellin
transform is by-passed by the Cheeger's analytical continuation of the
zeta-function on manifold with conical singularities. Furthermore, the
continuous spectrum leads to the introduction of smeared traces. In general, it
is pointed out that the presence of the divergences may depend on the smearing
function and they arise in removing the smearing cutoff. With a simple choice
of the smearing function, horizon divergences in the thermodynamical quantities
are recovered and these are similar to the divergences found by means of
off-shell methods like the brick wall model, the optical conformal
transformation techniques or the canonical path integral method.Comment: 17 pages, LaTex. A sign error corrected and few comments adde
Towards a Generalized Distribution Formalism for Gauge Quantum Fields
We prove that the distributions defined on the Gelfand-Shilov spaces, and
hence more singular than hyperfunctions, retain the angular localizability
property. Specifically, they have uniquely determined support cones. This
result enables one to develop a distribution-theoretic techniques suitable for
the consistent treatment of quantum fields with arbitrarily singular
ultraviolet and infrared behavior. The proofs covering the most general case
are based on the use of the theory of plurisubharmonic functions and
Hormander's estimates.Comment: 12 p., Department of Theoretical Physics, P.N.Lebedev Physical
Institute, Leninsky prosp. 53, Moscow 117924, Russi
- …