16 research outputs found
The influence of CYP enzymes and ABCB1 on treatment outcomes in schizophrenia: association of CYP1A2 activity with adverse effects
Aim: Genetic variants on metabolic and transport enzymes are good candidates to explain inter-individual differences in response to antipsychotics. The aim of this study is to evaluate and compare the influence of the CYP2D6, CYPC19, CYP1A2 and ABCB1 variants on plasma levels, treatment response and side effects of antipsychotics. Methods: Twenty polymorphisms in selected genes were genotyped in 318 patients diagnosed with schizophrenia, schizoaffective or delusional disorder treated with antipsychotics (clozapine, olanzapine, paliperidone, risperidone, aripiprazole and quetiapine). Plasma drug levels were determined after 6 weeks of treatment. The Positive and Negative Symptoms Scale (PANSS) and UKU scale of side effects were recorded at baseline and after 12 weeks of treatment. The effect of gene variants on plasma drug levels, treatment response and adverse effects were examined by multinomial regression. Results:CYP1A2 was found to be associated with psychic side effects (P = 0.02), with variants predicting higher enzyme activity associated with lower adverse effects, and was the strongest predictor for this adverse effect of all the studied factors. Functional variants in CYP genes were associated with plasma level differences, with higher activity variants associated with lower plasma levels. No association with improvement of the condition, as measured by the PANSS score, was found in this study. Conclusion: The results suggest that increased CYP1A2 activity protects against psychic side effects. Few studies have evaluated the impact of genetic factors on treatment response or side effects, and only in relation to a selection of adverse reactions. These results are a step towards better understanding of the factors behind the different aspects of clinical outcomes, such as various adverse effects
Advantages of plasmatic CXCL-10 as a prognostic and diagnostic biomarker for the risk of rejection and subclinical rejection in kidney transplantation
This study evaluate the potential of plasmatic CXCL-10 (pCXCL-10) as a pre&post transplantation prognostic and diagnostic biomarker of T-cell-mediated rejection (TCMR), antibody-mediated rejection (ABMR) and subclinical rejection (SCR) risk in adult kidney recipients considering BKV and CMV infections as possible clinical confounder factors. Twenty-eight of 100 patients included experienced rejection (TCMR:14; ABMR:14); 8 SCR; 13 and 16 were diagnosed with BKV and CMV infection, respectively. Pre-transplantation pCXCL-10 was significantly increased in TCMR and ABMR and post-transplantation in TCMR, ABMR and SCR compared with nonrejectors. All CMV+ patients showed pCXCL-10 levels above the cutoff values established for rejection whereas the 80% of BKV+ patients showed pCXCL-10 concentration < 100 pg/mL. pCXCL-10 could improve pre-transplantation patient stratification and immunosuppressive treatment selection according to rejection risk; and after kidney transplantation could be a potential early prognostic biomarker for rejection. Clinical confounding factor in BKV+ and particularly in CMV+ patients must be discarded
Monitoring of miR-181a-5p and miR-155-5p Plasmatic Expression as Prognostic Biomarkers for Acute and Subclinical Rejection in de novo Adult Liver Transplant Recipients.
Background and Aims: News strategies for the accurate assessment of the state of immunosuppression (IS) in liver transplant recipients are needed to prevent rejection and minimize drug-related side effects. miRNAs can potentially be used as diagnostic or prognostic biomarkers in transplant patients. This study evaluated the capacity of a plasmatic miRNA panel (miR-155-5p, miR-122-5p, miR-181a-5p, and miR148-3p) as an early non-invasive prognostic and diagnostic biomarker for T cell-mediated acute rejection (TCMAR) and subclinical rejection (SCR) in adult liver recipients. Methods: A total of 145 liver recipients were included. All patients received a calcineurin inhibitor with or without mycophenolate mofetil and methylprednisolone. Plasmatic miRNA expression was assessed by qPCR before and at different time-points after liver transplantation. Results: Seventeen patients experienced TCMAR, and eight were diagnosed with SCR during the protocol biopsy at the 3rd month post-transplantation. Pre-transplantation, miR-155-5p expression was significantly higher in TCMAR patients and in SCR patients than in non-rejectors, and miR-181a-5p expression was also significantly higher in SCR patients than in non-rejectors. Post-transplantation, before transaminase-level modification, significantly increased miR-181a-5p, miR-155-5p, and miR-122-5p expression was observed in TCMAR and SCR patients. Binary logistic regression analyses showed, post-transplantation, that TCMAR risk was better predicted by individual expression of miR-181a-5p (LOGIT = -6.35 + 3.87*miR-181a-5p), and SCR risk was better predicted by the combination of miR-181a-5p and miR-155-5p expression (LOGIT = -5.18 + 2.27*miR-181a-5p+1.74*miR-155-5p). Conclusions: Pre-transplantation plasmatic miR-155-5p expression may be useful for stratifying low-immunologic-risk patients, and post-transplantation miR-181a-5p and miR-155-5p may be candidates for inclusion in early, non-invasive prognostic biomarker panels to prevent TCMAR or SCR and better identify patient candidates for IS minimization. Large prospective randomized multicenter trials are needed to refine the cut-off values and algorithms and validate the clinical usefulness of these biomarkers
Early prognostic performance of miR155-5p monitoring for the risk of rejection: Logistic regression with a population pharmacokinetic approach in adult kidney transplant patients
Previous results from our group and others have shown that urinary pellet expression of miR155-5p and urinary CXCL-10 production could play a key role in the prognosis and diagnosis of acute rejection (AR) in kidney transplantation patients. Here, a logistic regression model was developed using NONMEM to quantify the relationships of miR155-5p urinary expression, CXCL-10 urinary concentration and tacrolimus and mycophenolic acid (MPA) exposure with the probability of AR in adult kidney transplant patients during the early post-transplant period. Owing to the contribution of therapeutic drug monitoring to achieving target exposure, neither tacrolimus nor MPA cumulative exposure was identified as a predictor of AR in the studied population. Even though CXCL-10 urinary concentration showed a trend, its effect on AR was not significant. In contrast, urinary miR155-5p expression was prognostic of clinical outcome. Monitoring miR155-5p urinary pellet expression together with immunosuppressive drug exposure could be very useful during routine clinical practice to identify patients with a potential high risk of rejection at the early stages of the post-transplant period. This early risk assessment would allow for the optimization of treatment and improved prevention of AR
Metodologia analítica en les intoxicacions agudes
Introducció La toxicologia d'urgències ha d'ésser una unitat funcional basada en el diagnòstic clínic, la seva confirmació analítica, la instauració del tractament escaigut, i la informació completa de les característiques tòxico-cinètiques dels xenobiòtics implicats, en el menor temps possible. L'objectivació de les dades clíniques i epidemiològiques només pot ésser confirmada mitjançant els resultats analítics aportats pel laboratori..
A pharmacogenetic intervention for the improvement of the safety profile of antipsychotic treatments
Antipsychotic drugs fail to achieve adequate response in 30-50% of treated patients and about 50% of them develop severe and lasting side effects. Treatment failure results in poorer prognosis with devastating repercussions for the patients, carers and broader society. Our study evaluated the clinical benefits of a pharmacogenetic intervention for the personalisation of antipsychotic treatment. Pharmacogenetic information in key CYP polymorphisms was used to adjust clinical doses in a group of patients who started or switched treatment with antipsychotic drugs (PharmG+, N = 123), and their results were compared with those of a group of patients treated following existing clinical guides (PharmG−, N = 167). There was no evidence of significant differences in side effects between the two arms. Although patients who had their antipsychotic dose adjusted according to CYPs polymorphisms (PharmG+) had a bigger reduction in side effects than those treated as usual (PharmG−), the difference was not statistically significant (p > 0.05 for all comparisons). However, PharmG+ patients treated with CYP2D6 substrates that were carriers of CYP2D6 UMs or PMs variants showed a significantly higher improvement in global, psychic and other UKU side effects than PharmG− patients (p = 0.02, p = 0.05 and p = 0.01, respectively). PharmG+ clozapine treated patients with CYP1A2 or CYP2C19 UM and PMs variants also showed higher reductions in UKU scores than PharmG− clozapine patients in general. However, those differences were not statistically significant. Pharmacogenetic interventions may improve the safety of antipsychotic treatments by reducing associated side effects. This intervention may be particularly useful when considering treatment with antipsychotics with one major metabolic pathway, and therefore more susceptible to be affected by functional variants of CYP enzymes
Influence of pharmacogenetics on the diversity of response to statins associated with adverse drug reactions
Statins are one of the most prescribed medications in developed countries as the treatment of choice for reducing cholesterol and preventing cardiovascular diseases. However, a large proportion of patients experience adverse drug reactions, especially myotoxicity. Among the factors that influence the diversity of response, pharmacogenetics emerges as a relevant factor of influence in inter-individual differences in response to statins and can be useful in the prevention of adverse drug effects
Influencia de la farmacogenética en la diversidad de respuesta a las estatinas asociada a las reacciones adversas
Las estatinas son unos de los medicamentos más prescritos en los países desarrollados por ser el tratamiento de elección para reducir los niveles de colesterol ayudando así a prevenir la enfermedad cardiovascular. Sin embargo, un gran número de pacientes sufre reacciones adversas, en especial miotoxicidad. Entre los factores que influyen en la diversidad de respuesta, la farmacogenética puede jugar un papel relevante especialmente en la prevención de los efectos adversos asociados a estos medicamentos
The influence of CYP enzymes and ABCB1 on treatment outcomes in schizophrenia: association of CYP1A2 activity with adverse effects
Aim: Genetic variants on metabolic and transport enzymes are good candidates to explain inter-individual differences in response to antipsychotics. The aim of this study is to evaluate and compare the influence of the CYP2D6, CYPC19, CYP1A2 and ABCB1 variants on plasma levels, treatment response and side effects of antipsychotics.Methods: Twenty polymorphisms in selected genes were genotyped in 318 patients diagnosed with schizophrenia, schizoaffective or delusional disorder treated with antipsychotics (clozapine, olanzapine, paliperidone, risperidone, aripiprazole and quetiapine). Plasma drug levels were determined after 6 weeks of treatment. The Positive and Negative Symptoms Scale (PANSS) and UKU scale of side effects were recorded at baseline and after 12 weeks of treatment. The effect of gene variants on plasma drug levels, treatment response and adverse effects were examined by multinomial regression.Results:CYP1A2 was found to be associated with psychic side effects (P = 0.02), with variants predicting higher enzyme activity associated with lower adverse effects, and was the strongest predictor for this adverse effect of all the studied factors. Functional variants in CYP genes were associated with plasma level differences, with higher activity variants associated with lower plasma levels. No association with improvement of the condition, as measured by the PANSS score, was found in this study.Conclusion: The results suggest that increased CYP1A2 activity protects against psychic side effects. Few studies have evaluated the impact of genetic factors on treatment response or side effects, and only in relation to a selection of adverse reactions. These results are a step towards better understanding of the factors behind the different aspects of clinical outcomes, such as various adverse effects
Clinical pharmacokinetics of mycophenolic acid and its metabolites in solid organ transplant recipient
Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32393Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.
MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment