8,187 research outputs found
Asymptotic Scaling of the Diffusion Coefficient of Fluctuating "Pulled" Fronts
We present a (heuristic) theoretical derivation for the scaling of the
diffusion coefficient for fluctuating ``pulled'' fronts. In agreement
with earlier numerical simulations, we find that as ,
approaches zero as , where is the average number of particles per
correlation volume in the stable phase of the front. This behaviour of
stems from the shape fluctuations at the very tip of the front, and is
independent of the microscopic model.Comment: Some minor algebra corrected, to appear in Rapid Comm., Phys. Rev.
Biases in the determination of dynamical parameters of star clusters: today and in the Gaia era
The structural and dynamical properties of star clusters are generally
derived by means of the comparison between steady-state analytic models and the
available observables. With the aim of studying the biases of this approach, we
fitted different analytic models to simulated observations obtained from a
suite of direct N-body simulations of star clusters in different stages of
their evolution and under different levels of tidal stress to derive mass, mass
function and degree of anisotropy. We find that masses can be
under/over-estimated up to 50% depending on the degree of relaxation reached by
the cluster, the available range of observed masses and distances of radial
velocity measures from the cluster center and the strength of the tidal field.
The mass function slope appears to be better constrainable and less sensitive
to model inadequacies unless strongly dynamically evolved clusters and a
non-optimal location of the measured luminosity function are considered. The
degree and the characteristics of the anisotropy developed in the N-body
simulations are not adequately reproduced by popular analytic models and can be
detected only if accurate proper motions are available. We show how to reduce
the uncertainties in the mass, mass-function and anisotropy estimation and
provide predictions for the improvements expected when Gaia proper motions will
be available in the near future.Comment: 14 pages, 8 figures, accepted for publication by MNRA
Generación automática de contornos de nivel
En este trabajo se realiza un estudio comparativo de los principales algoritmos para generación de contornos de nivel desarrollados hasta la fecha. Las comparaciones realizadas evaluan los algoritmos bajo los criterios de tiempo de cálculo y calidad de los contornos de nivel generados.Peer Reviewe
Generación automática de contornos de nivel
En este trabajo se realiza un estudio comparativo de los principales algoritmos para generación de contornos de nivel desarrollados hasta la fecha. Las comparaciones realizadas evaluan los algoritmos bajo los criterios de tiempo de cálculo y calidad de los contornos de nivel generados.Peer Reviewe
Duality in interacting particle systems and boson representation
In the context of Markov processes, we show a new scheme to derive dual
processes and a duality function based on a boson representation. This scheme
is applicable to a case in which a generator is expressed by boson creation and
annihilation operators. For some stochastic processes, duality relations have
been known, which connect continuous time Markov processes with discrete state
space and those with continuous state space. We clarify that using a generating
function approach and the Doi-Peliti method, a birth-death process (or discrete
random walk model) is naturally connected to a differential equation with
continuous variables, which would be interpreted as a dual Markov process. The
key point in the derivation is to use bosonic coherent states as a bra state,
instead of a conventional projection state. As examples, we apply the scheme to
a simple birth-coagulation process and a Brownian momentum process. The
generator of the Brownian momentum process is written by elements of the
SU(1,1) algebra, and using a boson realization of SU(1,1) we show that the same
scheme is available.Comment: 13 page
"Meterse en la boca del lobo". Una aproximación a la figura del "carnassier" en la religión ibérica
Sin resume
A rare early-type star revealed in the Wing of the Small Magellanic Cloud
Sk 183 is the visually-brightest star in the N90 nebula, a young star-forming
region in the Wing of the Small Magellanic Cloud (SMC). We present new optical
spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of
the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the
basis of its nitrogen spectrum, the star also displays broadened He I
absorption which suggests a later type. We propose that Sk 183 has a composite
spectrum and that it is similar to another star in the SMC, MPG 324. This
brings the number of rare O2- and O3-type stars known in the whole of the SMC
to a mere four. We estimate physical parameters for Sk 183 from analysis of its
spectrum. For a single-star model, we estimate an effective temperature of
46+/-2 kK, a low mass-loss rate of ~10^-7 Msun yr^-1, and a spectroscopic mass
of 46^+9_-8 Msun (for an adopted distance modulus of 18.7 mag to the young
population in the SMC Wing). An illustrative binary model requires a slightly
hotter temperature (~47.5 kK) for the primary component. In either scenario, Sk
183 is the earliest-type star known in N90 and will therefore be the dominant
source of hydrogen-ionising photons. This suggests Sk 183 is the primary
influence on the star formation along the inner edge of the nebula.Comment: Accepted by ApJ, 10 pages, 7 figures, v2 after proof
- …