12 research outputs found

    Peripheral Effects of FAAH Deficiency on Fuel and Energy Homeostasis: Role of Dysregulated Lysine Acetylation

    Get PDF
    FAAH (fatty acid amide hydrolase), primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA). Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/-) mice.FAAH(-/-) mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry). FAAH(-/-) mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN). Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/-) mice. Dysregulated hepatic FAAH(-/-) lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/-) acetyl-CoA (85%, p<0.01) corresponded to similar increases in citrate levels (45%). Altered FAAH(-/-) mitochondrial malate dehydrogenase (MDH2) acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/-) mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/-) aldolase B. Fed FAAH(-/-) alcohol dehydrogenase (ADH) acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/-) mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver's role in fostering the pre-diabetic state, and may reflect part of the mechanism underlying the hepatic effects of endocannabinoids in alcoholic liver disease mouse models

    [11C]acetate PET Imaging is not Always Associated with Increased Lipogenesis in Hepatocellular Carcinoma in Mice

    No full text
    PURPOSE: Altered metabolism, including increased glycolysis and de novo lipogenesis, is one of the hallmarks of cancer. Radiolabeled nutrients, including glucose and acetate, are extensively used for the detection of various tumors, including hepatocellular carcinomas (HCCs). High signal of [(11)C]acetate positron emission tomography (PET) in tumors is often considered to be associated with increased expression of Fatty Acid Synthase (FASN) and increased de novo lipogenesis in tumor tissues. Defining a subset of tumors with increased [(11)C]acetate PET signal and thus increased lipogenesis was suggested to help select a group of patients, who may benefit from lipogenesis-targeting therapies. PROCEDURES: To investigate whether [(11)C]acetate PET imaging is truly associated with increased de novo lipogenesis along with hepatocarcinogenesis, we performed [(11)C]acetate PET imaging in wildtype mice as well as two mouse HCC models, induced by myrAKT/Ras(V12) (AKT/Ras) and PIK3CA(1047R)/c-Met (PI3K/Met) oncogene combinations. In addition, we analyzed FASN expression and de novo lipogenesis rate in these mouse liver tissues. RESULTS: We found that while HCCs induced by AKT/Ras co-expression showed high levels of [(11)C]acetate PET signal compared to normal liver, HCCs induced by PI3K/Met overexpression did not. Intriguingly, elevated FASN expression and increased de novo lipogenesis rate were observed in both AKT/Ras and PI3K/Met HCCs. CONCLUSION: Altogether, our study suggests that [(11)C]acetate PET imaging can be a useful tool for imaging of a subset of HCCs. However, at molecular level, the increased [(11)C]acetate PET imaging is not always associated with increased FASN expression or de novo lipogenesis
    corecore